Нік дробових чисел. Способи знаходження найменшого загального кратного, нок - це, і всі пояснення



Поданий нижче матеріал є логічним продовженням теорії із статті під заголовком НОК – найменше загальне кратне, визначення, приклади, зв'язок між НОК та НОД. Тут ми поговоримо про знаходження найменшого загального кратного (НОК), та особливу увагу приділимо рішенню прикладів. Спочатку покажемо, як обчислюється НОК двох чисел через НОД цих чисел. Далі розглянемо знаходження найменшого загального кратного за допомогою розкладання чисел на звичайні множники. Після цього зупинимося на знаходженні НОК трьох та більшої кількості чисел, а також приділимо увагу обчисленню НОК негативних чисел.

Навігація на сторінці.

Обчислення найменшого загального кратного (НОК) через НОД

Один із способів знаходження найменшого загального кратного заснований на зв'язку між НОК та НОД. Існуючий зв'язок між НОК та НОД дозволяє обчислювати найменше загальне кратне двох цілих позитивних чисел через відомий найбільший спільний дільник. Відповідна формула має вигляд НОК (a, b) = a · b: НОД (a, b) . Розглянемо приклади знаходження НОК за наведеною формулою.

приклад.

Знайдіть найменше загальне кратне двох чисел 126 та 70 .

Рішення.

У цьому прикладі a = 126, b = 70. Скористаємося зв'язком НОК з НОД, що виражається формулою НОК (a, b) = a · b: НОД (a, b). Тобто спочатку нам належить знайти найбільший спільний дільник чисел 70 і 126 , після чого ми зможемо обчислити НОК цих чисел за записаною формулою.

Знайдемо НОД (126, 70), використовуючи алгоритм Евкліда: 126 = 70 · 1 +56, 70 = 56 · 1 +14, 56 = 14 · 4, отже, НОД (126, 70) = 14 .

Тепер знаходимо необхідне найменше загальне кратне: НОК(126, 70) = 126 · 70: НОД (126, 70) = 126 · 70: 14 = 630 .

Відповідь:

НОК (126, 70) = 630 .

приклад.

Чому дорівнює НОК(68, 34)?

Рішення.

Так як 68 ділиться націло на 34 , то НОД (68, 34) = 34 . Тепер обчислюємо найменше загальне кратне: НОК (68, 34) = 68 · 34: НОД (68, 34) = 68 · 34:34 = 68 .

Відповідь:

НОК(68, 34) = 68 .

Зауважимо, що попередній приклад підходить під наступне правило знаходження НОК для цілих позитивних чисел a і b: якщо число a ділиться на b, то найменше загальне кратне цих чисел дорівнює a.

Знаходження НОК за допомогою розкладання чисел на прості множники

Інший спосіб знаходження найменшого загального кратного базується на розкладанні чисел на прості множники. Якщо скласти твір з усіх простих множників даних чисел, після чого з цього твору виключити всі загальні прості множники, присутні в розкладах даних чисел, то отриманий добуток дорівнює найменшому загальному кратному даних чисел .

Озвучене правило знаходження НОК випливає з рівності НОК (a, b) = a · b: НОД (a, b). Справді, добуток чисел a та b дорівнює добутку всіх множників, що беруть участь у розкладах чисел a та b . У свою чергу НОД(a, b) дорівнює добутку всіх простих множників, що одночасно присутні в розкладах чисел a і b (про що написано в розділі знаходження НОД за допомогою розкладання чисел на прості множники).

Наведемо приклад. Нехай ми знаємо, що 75 = 3 · 5 · 5 і 210 = 2 · 3 · 5 · 7 . Складемо добуток із усіх множників даних розкладів: 2·3·3·5·5·5·7 . Тепер з цього твору виключимо всі множники, присутні і в розкладі числа 75 і в розкладі числа 210 (такими множниками є 3 і 5), тоді добуток набуде вигляду 2·3·5·5·7. Значення цього твору дорівнює найменшому загальному кратному чисел 75 і 210, тобто, НОК (75, 210) = 2 · 3 · 5 · 5 · 7 = 1050.

приклад.

Розклавши числа 441 і 700 на прості множники, знайдіть найменше загальне кратне цих чисел.

Рішення.

Розкладемо числа 441 і 700 на прості множники:

Отримуємо 441 = 3 · 3 · 7 · 7 і 700 = 2 · 2 · 5 · 5 · 7 .

Тепер складемо твір з усіх множників, що беруть участь у розкладах даних чисел: 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 · 7 . Виключимо з цього твору всі множники, одночасно присутні в обох розкладах (такий множник тільки один – це число 7): 2·2·3·3·5·5·7·7 . Таким чином, НОК (441, 700) = 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 = 44 100.

Відповідь:

НОК(441, 700) = 44100 .

Правило знаходження НОК з використанням розкладання чисел на прості множники можна сформулювати трохи інакше. Якщо до множників з розкладання числа a додати множники з розкладання числа b , то значення отриманого твору дорівнюватиме найменшому загальному кратному чисел a і b.

Наприклад візьмемо ті самі числа 75 і 210 , їх розкладання на прості множники такі: 75=3·5·5 і 210=2·3·5·7 . До множників 3, 5 і 5 з розкладання числа 75 додаємо відсутні множники 2 і 7 з розкладання числа 210, отримуємо добуток 2 · 3 · 5 · 5 · 7 , значення якого дорівнює НОК (75, 210) .

приклад.

Знайдіть найменше загальне кратне чисел 84 та 648 .

Рішення.

Отримуємо спочатку розкладання чисел 84 та 648 на прості множники. Вони мають вигляд 84 = 2 · 2 · 3 · 7 і 648 = 2 · 2 · 2 · 3 · 3 · 3 · 3 . До множників 2 , 2 , 3 і 7 з розкладання числа 84 додаємо множники 2 , 3 , 3 і 3 з розкладання числа 648 , що відсутні , отримуємо добуток 2·2·2·3·3·3·3·7 , який дорівнює 4 536 . Таким чином, шукане найменше загальне кратне чисел 84 і 648 дорівнює 4536 .

Відповідь:

НОК(84, 648) = 4536 .

Знаходження НОК трьох та більшої кількості чисел

Найменше загальне кратне трьох чи більшої кількості чисел може бути знайдено через послідовне перебування НОК двох чисел. Нагадаємо відповідну теорему, що дає спосіб знаходження НОК трьох та більшої кількості чисел.

Теорема.

Нехай дані цілі позитивні числа a 1 , a 2 , …, a k , найменше загальне кратне m k цих чисел знаходиться при послідовному обчисленні m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , … , m k =НОК(m k−1 , a k) .

Розглянемо застосування цієї теореми з прикладу знаходження найменшого загального кратного чотирьох чисел.

приклад.

Знайдіть НОК чотирьох чисел 140 , 9 , 54 та 250 .

Рішення.

У цьому прикладі a 1 = 140, a 2 = 9, a 3 = 54, a 4 = 250.

Спочатку знаходимо m 2 =НОК(a 1 , a 2)=НОК(140, 9). Для цього за алгоритмом Евкліда визначаємо НОД(140, 9) , маємо 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , отже, НОД(140, 9) = 1, звідки НОК (140, 9) = 140 · 9: НОД (140, 9) = 140 · 9: 1 = 1 260 . Тобто, m 2 = 1260 .

Тепер знаходимо m 3 =НОК(m 2 , a 3)=НОК(1 260, 54). Обчислимо його через НОД (1260, 54), який також визначимо за алгоритмом Евкліда: 1260 = 54 · 23 +18, 54 = 18 · 3 . Тоді НОД (1260, 54) = 18, звідки НОК (1260, 54) = 1260 · 54: НОД (1260, 54) = 1260 · 54:18 = 3780. Тобто, m3 = 3780 .

Залишилось знайти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250). Для цього знаходимо НОД (3780, 250) за алгоритмом Евкліда: 3780 = 250 · 15 +30, 250 = 30 · 8 +10, 30 = 10 · 3. Отже, НОД (3780, 250) = 10, звідки НОК (3780, 250) = 3780 · 250: НОД (3780, 250) = 3 780 250:10 = 94 500 . Тобто, m 4 = 94500 .

Таким чином, найменше загальне кратне вихідних чотирьох чисел дорівнює 94500 .

Відповідь:

НОК(140, 9, 54, 250) = 94500.

У багатьох випадках найменша загальна кратність трьох і більшої кількості чисел зручно знаходити з використанням розкладів даних чисел на прості множники. При цьому слід дотримуватись наступного правила. Найменше загальне кратне кількох чисел дорівнює добутку, яке складається так: до всіх множників з розкладання першого числа додаються відсутні множники з розкладання другого числа, до отриманих множників додаються відсутні множники з розкладання третього числа і так далі.

Розглянемо приклад знаходження найменшого загального кратного із використанням розкладання чисел на прості множники.

приклад.

Знайдіть найменше загальне кратне п'ять чисел 84 , 6 , 48 , 7 , 143 .

Рішення.

Спочатку отримуємо розкладання даних чисел на прості множники: 84 = 2 · 2 · 3 · 7 , 6 = 2 · 3 , 48 = 2 · 2 · 2 · 2 · 3 , 7 (7 - просте число , воно збігається зі своїм розкладанням на прості множники) і 143 = 11 · 13 .

Для знаходження НОК даних чисел до множників першого числа 84 (ними є 2, 2, 3 і 7) потрібно додати відсутні множники з розкладання другого числа 6. Розкладання числа 6 не містить множників, що відсутні, так як і 2 і 3 вже присутні в розкладанні першого числа 84 . Далі до множників 2 , 2 , 3 і 7 додаємо множники 2 і 2 , що відсутні , з розкладання третього числа 48 , отримуємо набір множників 2 , 2 , 2 , 2 , 3 і 7 . До цього набору на наступному кроці не доведеться додавати множників, тому що 7 міститься в ньому. Нарешті, до множників 2 , 2 , 2 , 2 , 3 і 7 додаємо множники 11 і 13 з розкладання числа 143 . Отримуємо добуток 2·2·2·2·3·7·11·13 , який дорівнює 48 048 .

Визначення.Найбільше натуральне число, яке діляться без залишку числа а і b, називають найбільшим спільним дільником (НДД)цих чисел.

Знайдемо найбільший спільний дільник чисел 24 та 35.
Дільниками 24 будуть числа 1, 2, 3, 4, 6, 8, 12, 24, а дільниками 35 будуть числа 1, 5, 7, 35.
Бачимо, що числа 24 і 35 мають лише один спільний дільник – число 1. Такі числа називають взаємно простими.

Визначення.Натуральні числа називають взаємно простимиякщо їх найбільший спільний дільник (НОД) дорівнює 1.

Найбільший спільний дільник (НДД)можна знайти, не виписуючи всіх дільників цих чисел.

Розкладемо на множники числа 48 і 36, отримаємо:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
З множників, що входять до розкладання першого з цих чисел, викреслимо ті, які не входять до розкладання другого числа (тобто дві двійки).
Залишаються множники 2 * 2 * 3. Їх добуток дорівнює 12. Це число і є найбільшим спільним дільником чисел 48 і 36. Також знаходять найбільший спільний дільник трьох і більше чисел.

Щоб знайти найбільший спільний дільник

2) з множників, що входять до розкладання одного з цих чисел, викреслити ті, які не входять до розкладання інших чисел;
3) знайти виробництво множників, що залишилися.

Якщо всі дані числа діляться одне з них, це число і є найбільшим спільним дільникомданих чисел.
Наприклад, найбільшим загальним дільником чисел 15, 45, 75 і 180 буде число 15, тому що на нього діляться всі інші числа: 45, 75 та 180.

Найменше загальне кратне (НОК)

Визначення. Найменшим загальним кратним (НОК)натуральних чисел а та Ь називають найменше натуральне число, яке кратне і a, і b. Найменше загальне кратне (НОК) чисел 75 і 60 можна знайти і не виписуючи кратні поспіль цих чисел. Для цього розкладемо 75 і 60 на прості множники: 75 = 3*5*5, а 60 = 2*2*3*5.
Випишемо множники, що входять у розкладання першого з цих чисел, і додамо до них множники 2 і 2, що відсутні, з розкладання другого числа (тобто об'єднуємо множники).
Отримуємо п'ять множників 2*2*3*5*5, добуток яких дорівнює 300. Це число є найменшим загальним кратним чисел 75 та 60.

Також знаходять найменше загальне кратне для трьох і більше чисел.

Щоб знайти найменше загальне кратнекількох натуральних чисел, треба:
1) розкласти їх у прості множники;
2) виписати множники, що входять до розкладання одного з чисел;
3) додати до них множники, що відсутні, з розкладів інших чисел;
4) знайти добуток множників, що вийшли.

Зауважимо, що й одне з даних чисел ділиться попри всі інші числа, це число і є найменшим загальним кратним даних чисел.
Наприклад, найменшим загальним кратним чисел 12, 15, 20 і 60 буде число 60, оскільки воно поділяється на всі ці числа.

Піфагор (VI ст. до н. е.) та його учні вивчали питання про подільність чисел. Число, що дорівнює сумі всіх його дільників (без самого числа), вони називали досконалим числом. Наприклад, числа 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) вчинені. Наступні досконалі числа - 496, 8128, 33550336. Піфагорійці знали тільки перші три досконалих числа. Четверте – 8128 – стало відомо в I ст. н. е. П'яте - 33550336 - було знайдено в XV ст. До 1983 було відомо вже 27 досконалих чисел. Але досі вчені не знають, чи є непарні досконалі числа, чи є найбільше досконале число.
Інтерес древніх математиків до простим числам пов'язані з тим, що будь-яке число або просте, чи то, можливо представлено як твори простих чисел, т. е. прості числа - це хіба що цеглинки, у тому числі будуються інші натуральні числа.
Ви, напевно, звернули увагу, що прості числа у ряді натуральних чисел зустрічаються нерівномірно – в одних частинах ряду їх більше, в інших – менше. Але що далі ми просуваємося по числовому ряду, то рідше зустрічаються прості числа. Виникає питання: чи існує останнє (найбільше) просте число? Давньогрецький математик Евклід (III ст. до н. е.) у своїй книзі «початку», яка була протягом двох тисяч років основним підручником математики, довів, що простих чисел нескінченно багато, тобто за кожним простим числом є ще більше просте число.
Для віднайдення простих чисел інший грецький математик того ж часу Ератосфен придумав такий спосіб. Він записував усі числа від 1 до якогось числа, а потім викреслював одиницю, яка не є ні простим, ні складовим числом, потім викреслював через одне усі числа, що йдуть після 2 (числа, кратні 2, тобто 4, 6 , 8 і т. д.). Першим числом, що залишилося після 2 було 3. Далі викреслювалися через два всі числа, що йдуть після 3 (числа, кратні 3, тобто 6, 9, 12 і т. д.). зрештою залишалися невикресленими лише прості числа.

Але багато натуральних чисел діляться націло ще й на інші натуральні числа.

Наприклад:

Число 12 ділиться на 1, 2, 3, 4, 6, 12;

Число 36 ділиться на 1, 2, 3, 4, 6, 12, 18, 36.

Числа, на які число ділиться націло (для 12 це 1, 2, 3, 4, 6 та 12) називаються дільниками числа. Дільник натурального числа a- це таке натуральне число, яке ділить це число aбез залишку. Натуральне число, яке має більше двох дільників, називається складовим .

Зверніть увагу, що числа 12 та 36 мають спільні дільники. Це числа: 1, 2, 3, 4, 6, 12. Найбільший із дільників цих чисел – 12. Загальний дільник двох даних чисел aі b- це число, на яке діляться без залишку обидва дані числа aі b.

Загальним кратнимкількох чисел називається число, яке поділяється на кожне із цих чисел. Наприклад, Числа 9, 18 і 45 мають загальне кратне 180. Але 90 і 360 - теж їх загальні кратні. Серед усіх jбщих кратних завжди є найменше, в даному випадку це 90. Це число називається найменшимзагальним кратним (НОК).

НОК завжди натуральне число, яке має бути більшим за найбільший з чисел, для яких воно визначається.

Найменше загальне кратне (НОК). Властивості.

Комутативність:

Асоціативність:

Зокрема, якщо і взаємно-прості числа, то:

Найменше загальне кратне двох цілих чисел mі nє дільником всіх інших загальних кратних mі n. Більш того, безліч спільних кратних m, nзбігається з безліччю кратних для НОК( m, n).

Асимптотики можуть бути виражені через деякі теоретико-числові функції.

Так, функція Чебишева. А також:

Це випливає з визначення та властивостей функції Ландау g(n).

Що випливає із закону розподілу простих чисел.

Знаходження найменшого загального кратного (НОК).

НОК( a, b) можна обчислити декількома способами:

1. Якщо відомий найбільший спільний дільник, можна використовувати його зв'язок із НОК:

2. Нехай відоме канонічне розкладання обох чисел на прості множники:

де p 1 ,...,p k- Різні прості числа, а d 1 ,...,d kі e 1 ,...,e k- Невід'ємні цілі числа (вони можуть бути нулями, якщо відповідне просте відсутнє у розкладанні).

Тоді НОК ( a,b) обчислюється за формулою:

Іншими словами, розкладання НОК містить усі прості множники, що входять хоча б в одне з розкладів чисел a, b, причому із двох показників ступеня цього множника береться найбільший.

приклад:

Обчислення найменшого загального кратного кількох чисел може бути зведено до кількох послідовних обчислень НОК від двох чисел:

Правило.Щоб знайти НОК ряду чисел, потрібно:

- Розкласти числа на прості множники;

— перенести у множники шуканого твору найбільше розкладання (твір множників найбільшої кількості із заданих), та був додати множники з розкладання інших чисел, які зустрічаються у першому числі чи стоять у ньому менше разів;

- отриманий добуток простих множників буде НОК заданих чисел.

Будь-які два чи більше натуральних чисел мають своє НОК. Якщо числа не кратні один одному або не мають однакових множників у розкладанні, то їх НОК дорівнює добутку цих чисел.

Прості множники числа 28 (2, 2, 7) доповнили множником 3 (числа 21), отриманий добуток (84) буде найменшим числом, яке поділяється на 21 та 28 .

Прості множники найбільшого числа 30 доповнили множником 5 числа 25, отриманий добуток 150 більший за найбільше число 30 і ділиться на всі задані числа без залишку. Це найменший твір із можливих (150, 250, 300...), якому кратні всі задані числа.

Числа 2,3,11,37 - прості, тому їх НОК дорівнює добутку заданих чисел.

Правило. Щоб обчислити НОК простих чисел, всі ці числа потрібно перемножити між собою.

Ще один варіант:

Щоб знайти найменше загальне кратне (НОК) кількох чисел потрібно:

1) уявити кожне число як добуток його простих множників, наприклад:

504 = 2 · 2 · 2 · 3 · 3 · 7 ,

2) записати ступені всіх простих множників:

504 = 2 · 2 · 2 · 3 · 3 · 7 = 2 3 · 3 2 · 7 1 ,

3) виписати всі прості дільники (множники) кожного із цих чисел;

4) вибрати найбільший ступінь кожного з них, що зустрівся у всіх розкладах цих чисел;

5) перемножити ці ступені.

приклад. Знайти НОК чисел: 168, 180 та 3024.

Рішення. 168 = 2 · 2 · 2 · 3 · 7 = 2 3 · 3 1 · 7 1 ,

180 = 2 · 2 · 3 · 3 · 5 = 2 2 · 3 2 · 5 1 ,

3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 2 4 · 3 3 · 7 1 .

Виписуємо найбільші ступені всіх простих дільників і перемножуємо їх:

НОК = 24 · 33 · 51 · 71 = 15120.

Найбільший спільний дільник

Визначення 2

Якщо натуральне число a ділиться на натуральне число $b$, $b$ називають дільником числа $a$, а число $a$ називають кратним числа $b$.

Нехай $a$ та $b$-натуральні числа. Число $c$ називають спільним дільником і для $a$ і $b$.

Безліч спільних дільників чисел $a$ і $b$ звичайно, оскільки жоден із цих дільників не може бути більшим, ніж $a$. Отже, серед цих дільників є найбільший, який називають найбільшим спільним дільником чисел $a$ і $b$ і для його позначення використовують записи:

$НОД \ (a; b) \ або \ D \ (a; b) $

Щоб знайти найбільший спільний дільник двох, чисел необхідно:

  1. Знайти добуток чисел, знайдених на кроці 2. Отримане число і буде найбільшим шуканим спільним дільником.

Приклад 1

Знайти НОД чисел $121$ і $132.$

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Вибрати числа, які входять до розкладання цих чисел

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Знайти добуток чисел, знайдених на кроці 2. Отримане число і буде найбільшим шуканим спільним дільником.

    $НОД=2\cdot 11=22$

Приклад 2

Знайти НОД одночленів $63$ і $81$.

Будемо знаходити згідно з представленим алгоритмом. Для цього:

    Розкладемо числа на прості множники

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Вибираємо числа, що входять до розкладання цих чисел

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Знайдемо добуток чисел, знайдених на кроці 2. Отримане число і буде найбільшим шуканим спільним дільником.

    $НОД=3\cdot 3=9$

Знайти НОД двох чисел можна і по-іншому, використовуючи безліч дільників чисел.

Приклад 3

Знайти НОД чисел $48$ та $60$.

Рішення:

Знайдемо безліч дільників числа $48$: $\left\((\rm 1,2,3.4.6,8,12,16,24,48)\right\)$

Тепер знайдемо безліч дільників числа $60$:$\ \left\((\rm 1,2,3,4,5,6,10,12,15,20,30,60)\right\)$

Знайдемо перетин цих множин: $ \ left \ (( \ rm 1,2,3,4,6,12) \ right \) $ - це безліч буде визначати безліч спільних дільників чисел $ 48 $ і $ 60 $. Найбільший елемент у даній множині буде число $12$. Значить, найбільший спільний дільник чисел $48$ і $60$ буде $12$.

Визначення НОК

Визначення 3

Загальним кратним натуральних чисел$a$ і $b$ називається натуральне число, яке кратне $a$ і $b$.

Загальними кратними чисел називаються числа які діляться на вихідні без залишку.

Найменше із загальних кратних буде називатися найменшим загальним кратним і позначається НОК$(a;b)$ або K$(a;b).$

Щоб знайти НОК двох чисел, необхідно:

  1. Розкласти числа на прості множники
  2. Виписати множники, що входять до складу першого числа та додати до них множники, які входять до складу другого та не ходять до складу першого

Приклад 4

Знайти НОК чисел $99$ та $77$.

Будемо знаходити згідно з представленим алгоритмом. Для цього

    Розкласти числа на прості множники

    $99=3\cdot 3\cdot 11$

    Виписати множники, що входять до складу першого

    додати до них множники, які входять до складу другого та не ходять до складу першого

    Знайти добуток чисел, знайдених на кроці 2.Отримане число і буде шуканим найменшим загальним кратним

    $НОК=3cdot 3cdot 11cdot 7=693$

    Упорядкування списків дільників чисел часто дуже трудомістке заняття. Існує спосіб знаходження НОД, який називається алгоритмом Евкліда.

    Твердження, на яких заснований алгоритм Евкліда:

    Якщо $a$ і $b$ --натуральні числа, причому $a\vdots b$, то $D(a;b)=b$

    Якщо $a$ і $b$ --натуральні числа, такі що $b

Користуючись $D(a;b)= D(a-b;b)$, можна послідовно зменшувати ці цифри до тих пір, поки не дійдемо до такої пари чисел, що одне з них ділиться на інше. Тоді найменше з цих чисел і буде шуканим найбільшим спільним дільником для чисел $a$ і $b$.

Властивості НОД та НОК

  1. Будь-яке загальне кратне чисел $a$ і $b$ ділиться на K$(a;b)$
  2. Якщо $a\vdots b$ , то $(a;b)=a$
  3. Якщо К$(a;b)=k$ і $m$-натуральне число, то К$(am;bm)=km$

    Якщо $d$-загальний дільник для $a$ і $b$, то К($\frac(a)(d);\frac(b)(d)$)=$\ \frac(k)(d) $

    Якщо $a\vdots c$ і $b\vdots c$ , то $\frac(ab)(c)$ - загальне кратне чисел $a$ і $b$

    Для будь-яких натуральних чисел $a$ і $b$ виконується рівність

    $D(a;b)\cdot До(a;b)=ab$

    Будь-який спільний дільник чисел $a$ і $b$ є дільником числа $D(a;b)$

Щоб зрозуміти, як обчислювати НОК, слід визначитися насамперед із значенням терміна "кратне".


Кратним числу А називають таке натуральне число, яке без залишку ділиться на А. Так, кратними числами 5 можна вважати 15, 20, 25 і так далі.


Дільників конкретного числа може бути обмежена кількість, а ось кратних безліч.


Загальне кратне натуральних чисел – число, яке ділиться на них без залишку.

Як знайти найменше загальне кратне чисел

Найменше загальне кратне (НОК) чисел (двох, трьох або більше) - це найменше натуральне число, яке ділиться на ці цифри націло.


Щоб знайти НОК, можна використати кілька способів.


Для невеликих чисел зручно виписати в рядок усі кратні цих чисел доти, доки серед них не знайдеться загальне. Кратні позначають у записі великою літерою До.


Наприклад, кратні числа 4 можна записати так:


До (4) = (8,12, 16, 20, 24, ...)


До (6) = (12, 18, 24, ...)


Так, можна побачити, що найменшим загальним кратним чисел 4 і 6 є число 24. Цей запис виконують таким чином:


НОК (4, 6) = 24


Якщо числа великі, знайти загальне кратне трьох чи більше чисел, краще використовувати інший спосіб обчислення НОК.


Для виконання завдання потрібно розкласти запропоновані числа на прості множники.


Спочатку треба виписати в рядок розкладання найбільшого з чисел, а під ним – інших.


У розкладанні кожного числа може бути різна кількість множників.


Наприклад, розкладемо на прості множники числа 50 та 20.




У розкладанні меншого числа слід підкреслити множники, які відсутні в розкладанні першого найбільшого числа, а потім додати до нього. У наведеному прикладі не вистачає двійки.


Тепер можна обчислити найменше загальне кратне 20 та 50.


НОК (20, 50) = 2 * 5 * 5 * 2 = 100


Так, добуток простих множників більшого числа та множників другого числа, які не увійшли до розкладання більшого, буде найменшим загальним кратним.


Щоб знайти НОК трьох чисел і більше, слід їх розкласти на прості множники, як і в попередньому випадку.


Як приклад можна знайти найменше загальне кратне чисел 16, 24, 36.


36 = 2 * 2 * 3 * 3


24 = 2 * 2 * 2 * 3


16 = 2 * 2 * 2 * 2


Так, у розкладання більшого числа на множники не увійшли лише дві двійки з розкладання шістнадцяти (одна є в розкладі двадцяти чотирьох).


Таким чином, їх потрібно додати до розкладання більшого числа.


НОК (12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9


Існують окремі випадки визначення найменшого загального кратного. Так, якщо одне з чисел можна поділити без залишку на інше, то більше з цих чисел буде найменшим загальним кратним.


Наприклад, НОК дванадцяти та двадцяти чотирьох буде двадцять чотири.


Якщо необхідно знайти найменше загальне кратне взаємно простих чисел, які мають однакових дільників, їх НОК дорівнюватиме їх твору.


Наприклад, НОК (10, 11) = 110.