Примери за решения. Квадратни уравнения


Копьевская селска гимназия

10 начина за решаване на квадратни уравнения

Ръководител: Патрикеева Галина Анатолиевна,

учител по математика

с. Копево 2007г

1. История на развитието на квадратните уравнения

1.1 Квадратни уравнения в древен Вавилон

1.2 Как Диофант съставя и решава квадратни уравнения

1.3 Квадратни уравнения в Индия

1.4 Квадратни уравнения от ал-Хорезми

1.5 Квадратни уравнения в Европа XIII - XVII век

1.6 За теоремата на Виета

2. Методи за решаване на квадратни уравнения

Заключение

Литература

1. История на развитието на квадратните уравнения

1.1 Квадратни уравнения в древен Вавилон

Необходимостта от решаване на уравнения не само от първа, но и от втора степен, дори в древни времена, е била причинена от необходимостта от решаване на проблеми, свързани с намирането на площи на земни парцели и с изкопни работи от военен характер, както и както и с развитието на самата астрономия и математика. Квадратните уравнения могат да бъдат решени около 2000 г. пр.н.е. д. вавилонци.

Използвайки съвременна алгебрична нотация, можем да кажем, че в техните клинописни текстове има, в допълнение към непълните, такива, например, пълни квадратни уравнения:

х 2 + х = ¾; х 2 - х = 14,5

Правилото за решаване на тези уравнения, изложено във вавилонските текстове, по същество съвпада със съвременното, но не е известно как вавилонците са стигнали до това правило. Почти всички клинописни текстове, открити досега, предоставят само проблеми с решения, изложени под формата на рецепти, без индикация как са намерени.

Въпреки високото ниво на развитие на алгебрата във Вавилон, в клинописните текстове липсва понятието за отрицателно число и общи методи за решаване на квадратни уравнения.

1.2 Как Диофант съставя и решава квадратни уравнения.

Аритметиката на Диофант не съдържа систематично представяне на алгебрата, но съдържа систематична поредица от задачи, придружени от обяснения и решени чрез построяване на уравнения от различни степени.

Когато съставя уравнения, Диофант умело подбира неизвестни, за да опрости решението.

Ето например една от задачите му.

Проблем 11.„Намерете две числа, като знаете, че сборът им е 20, а произведението им е 96“

Диофант разсъждава по следния начин: от условията на задачата следва, че търсените числа не са равни, тъй като ако бяха равни, тогава произведението им не би било равно на 96, а на 100. Така едно от тях ще бъде повече от половината от сумата им, т.е. 10 + х, другото е по-малко, т.е. 10-те. Разликата между тях 2x .

Следователно уравнението:

(10 + x)(10 - x) = 96

100 - х 2 = 96

x 2 - 4 = 0 (1)

Оттук х = 2. Едно от търсените числа е равно на 12 , друго 8 . Решение х = -2за Диофант не съществува, тъй като гръцката математика познава само положителни числа.

Ако решим тази задача, като изберем едно от търсените числа като неизвестно, тогава ще стигнем до решение на уравнението

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


Ясно е, че като избира полуразликата на търсените числа като неизвестно, Диофант опростява решението; той успява да сведе проблема до решаване на непълно квадратно уравнение (1).

1.3 Квадратни уравнения в Индия

Задачи за квадратни уравнения се намират още в астрономическия трактат „Aryabhattiam“, съставен през 499 г. от индийския математик и астроном Aryabhatta. Друг индийски учен, Брахмагупта (7 век), очерта общо правило за решаване на квадратни уравнения, сведени до една канонична форма:

ах 2 + b x = c, a > 0. (1)

В уравнение (1), коефициентите, с изключение на А, може да бъде и отрицателен. Правилото на Брахмагупта по същество е същото като нашето.

В древна Индия публичните състезания в решаването на трудни проблеми са били обичайни. В една от старите индийски книги се казва следното за подобни състезания: „Както слънцето засенчва звездите с блясъка си, така един учен човек ще засенчи славата на друг в публични събрания, предлагайки и решавайки алгебрични задачи.“ Проблемите често се представят в поетична форма.

Това е един от проблемите на известния индийски математик от 12 век. Бхаскари.

Проблем 13.

„Ято бързи маймуни и дванадесет по лозите...

Властите, като ядоха, се забавляваха. Започнаха да скачат, да висят...

Има ги на площада, осма част Колко маймуни имаше?

Забавлявах се на поляната. Кажи ми, в тази опаковка?

Решението на Бхаскара показва, че той е знаел, че корените на квадратните уравнения са двузначни (фиг. 3).

Уравнението, съответстващо на задача 13 е:

( х /8) 2 + 12 = х

Бхаскара пише под прикритието:

x 2 - 64x = -768

и, за да завършим лявата страна на това уравнение до квадрат, добавя към двете страни 32 2 , след което получаваме:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Квадратни уравнения в ал-Хорезми

В алгебричния трактат на ал-Хорезми е дадена класификация на линейни и квадратни уравнения. Авторът брои 6 вида уравнения, изразявайки ги по следния начин:

1) „Квадратите са равни на корени“, т.е. брадва 2 + c = b Х.

2) “Квадратите са равни на числа”, т.е. брадва 2 = c.

3) „Корените са равни на числото“, т.е. ах = s.

4) „Квадратите и числата са равни на корени“, т.е. брадва 2 + c = b Х.

5) “Квадратите и корените са равни на числата”, т.е. ах 2 + bx = s.

6) „Корените и числата са равни на квадрати“, т.е. bx + c = брадва 2 .

За ал-Хорезми, който избягва използването на отрицателни числа, членовете на всяко от тези уравнения са събираеми, а не изваждаеми. В този случай уравненията, които нямат положителни решения, очевидно не се вземат предвид. Авторът излага методи за решаване на тези уравнения, използвайки техниките на ал-джабр и ал-мукабала. Неговите решения, разбира се, не съвпадат напълно с нашите. Да не говорим, че е чисто риторично, трябва да се отбележи например, че при решаване на непълно квадратно уравнение от първи тип

ал-Хорезми, както всички математици преди 17-ти век, не взема предвид нулевото решение, вероятно защото в конкретни практически задачи то няма значение. При решаването на пълни квадратни уравнения ал-Хорезми излага правилата за решаването им, като използва конкретни числени примери и след това геометрични доказателства.

Проблем 14.„Квадратът и числото 21 са равни на 10 корена. Намерете корена" (което предполага корена на уравнението x 2 + 21 = 10x).

Решението на автора е нещо подобно: разделете броя на корените наполовина, получавате 5, умножете 5 по себе си, извадете 21 от продукта, това, което остава, е 4. Вземете корен от 4, получавате 2. Извадете 2 от 5 , получавате 3, това ще бъде желаният корен. Или добавете 2 към 5, което дава 7, това също е корен.

Трактатът на ал-Хорезми е първата книга, достигнала до нас, която систематично излага класификацията на квадратните уравнения и дава формули за тяхното решаване.

1.5 Квадратни уравнения в Европа XIII - XVII bb

Формулите за решаване на квадратни уравнения по линията на ал-Хорезми в Европа са изложени за първи път в Книгата на абака, написана през 1202 г. от италианския математик Леонардо Фибоначи. Този обемист труд, който отразява влиянието на математиката, както от страните на исляма, така и от древна Гърция, се отличава със своята пълнота и яснота на изложението. Авторът самостоятелно разработва някои нови алгебрични примери за решаване на задачи и пръв в Европа се приближава към въвеждането на отрицателни числа. Книгата му допринася за разпространението на алгебричните знания не само в Италия, но и в Германия, Франция и други европейски страни. Много задачи от Книгата на абака са използвани в почти всички европейски учебници от 16-17 век. и отчасти XVIII.

Общото правило за решаване на квадратни уравнения, намалено до една канонична форма:

х 2 + bx = c,

за всички възможни комбинации от знаци на коефициента b , се формулиран в Европа едва през 1544 г. от M. Stiefel.

Извеждането на формулата за решаване на квадратно уравнение в общ вид е достъпно от Viète, но Viète признава само положителни корени. Италианските математици Тарталия, Кардано, Бомбели са сред първите през 16 век. В допълнение към положителните се вземат предвид и отрицателните корени. Едва през 17в. Благодарение на работата на Жирар, Декарт, Нютон и други учени, методът за решаване на квадратни уравнения придобива съвременна форма.

1.6 За теоремата на Виета

Теоремата, изразяваща връзката между коефициентите на квадратно уравнение и неговите корени, наречена на Виета, е формулирана от него за първи път през 1591 г., както следва: „Ако б + д, умножено по А - А 2 , равно на BD, Че Аравно на INи равни д ».

За да разберем Виета, трябва да помним това А, като всяка гласна буква, означаваше неизвестното (нашата х), гласни IN, д- коефициенти за неизвестното. На езика на съвременната алгебра горната формулировка на Виета означава: ако има

(а + b )x - x 2 = аб ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Изразявайки връзката между корените и коефициентите на уравненията с общи формули, написани с помощта на символи, Виете установява еднаквост в методите за решаване на уравнения. Символиката на Виет обаче все още е далеч от съвременния си вид. Той не признаваше отрицателните числа и затова при решаването на уравнения разглеждаше само случаите, когато всички корени бяха положителни.

2. Методи за решаване на квадратни уравнения

Квадратните уравнения са основата, върху която се крепи величествената сграда на алгебрата. Квадратните уравнения се използват широко при решаване на тригонометрични, експоненциални, логаритмични, ирационални и трансцендентни уравнения и неравенства. Всички знаем как да решаваме квадратни уравнения от училище (8 клас) до завършването.

Първо ниво

Квадратни уравнения. Изчерпателното ръководство (2019)

В термина „квадратно уравнение“ ключовата дума е „квадратично“. Това означава, че уравнението задължително трябва да съдържа променлива (същото x) на квадрат и не трябва да има x на трета (или по-голяма) степен.

Решаването на много уравнения се свежда до решаване на квадратни уравнения.

Нека се научим да определяме, че това е квадратно уравнение, а не някое друго уравнение.

Пример 1.

Нека да се отървем от знаменателя и да умножим всеки член на уравнението по

Нека преместим всичко в лявата страна и подредим членовете в низходящ ред на степените на X

Сега можем да кажем с увереност, че това уравнение е квадратно!

Пример 2.

Умножете лявата и дясната страна по:

Това уравнение, въпреки че първоначално е в него, не е квадратно!

Пример 3.

Нека умножим всичко по:

Страшен? Четвърта и втора степен... Ако обаче направим замяна, ще видим, че имаме просто квадратно уравнение:

Пример 4.

Изглежда, че е там, но нека го разгледаме по-отблизо. Нека преместим всичко отляво:

Вижте, редуцирано е - и сега е просто линейно уравнение!

Сега се опитайте да определите сами кои от следните уравнения са квадратни и кои не:

Примери:

Отговори:

  1. квадрат;
  2. квадрат;
  3. не е квадратна;
  4. не е квадратна;
  5. не е квадратна;
  6. квадрат;
  7. не е квадратна;
  8. квадрат.

Математиците условно разделят всички квадратни уравнения на следните типове:

  • Пълни квадратни уравнения- уравнения, в които коефициентите и, както и свободният член c, не са равни на нула (както в примера). В допълнение, сред пълните квадратни уравнения има дадено- това са уравнения, в които коефициентът (уравнението от пример едно е не само пълно, но и намалено!)
  • Непълни квадратни уравнения- уравнения, в които коефициентът и/или свободният член c са равни на нула:

    Те са непълни, защото им липсва някакъв елемент. Но уравнението винаги трябва да съдържа x на квадрат!!! В противен случай това вече няма да е квадратно уравнение, а някакво друго уравнение.

Защо са измислили такова разделение? Изглежда, че има Х на квадрат и добре. Това разделение се определя от методите за решаване. Нека разгледаме всеки от тях по-подробно.

Решаване на непълни квадратни уравнения

Първо, нека се съсредоточим върху решаването на непълни квадратни уравнения - те са много по-прости!

Има видове непълни квадратни уравнения:

  1. , в това уравнение коефициентът е равен.
  2. , в това уравнение свободният член е равен на.
  3. , в това уравнение коефициентът и свободният член са равни.

1. i. Тъй като знаем как да извадим корен квадратен, нека изразим от това уравнение

Изразът може да бъде както отрицателен, така и положителен. Числото на квадрат не може да бъде отрицателно, защото при умножаване на две отрицателни или две положителни числа резултатът винаги ще бъде положително число, така че: ако, тогава уравнението няма решения.

И ако, тогава получаваме два корена. Няма нужда да запомняте тези формули. Основното е, че трябва да знаете и винаги да помните, че не може да бъде по-малко.

Нека се опитаме да решим някои примери.

Пример 5:

Решете уравнението

Сега остава само да извлечете корена от лявата и дясната страна. В крайна сметка помните ли как се извличат корени?

Отговор:

Никога не забравяйте за корените с отрицателен знак!!!

Пример 6:

Решете уравнението

Отговор:

Пример 7:

Решете уравнението

о! Квадратът на число не може да бъде отрицателен, което означава, че уравнението

без корени!

За такива уравнения, които нямат корени, математиците излязоха със специална икона - (празен набор). И отговорът може да бъде написан така:

Отговор:

По този начин това квадратно уравнение има два корена. Тук няма ограничения, тъй като не сме извлекли корена.
Пример 8:

Решете уравнението

Нека извадим общия множител извън скобите:

По този начин,

Това уравнение има два корена.

Отговор:

Най-простият тип непълни квадратни уравнения (въпреки че всички те са прости, нали?). Очевидно това уравнение винаги има само един корен:

Тук ще се откажем от примерите.

Решаване на пълни квадратни уравнения

Напомняме ви, че пълното квадратно уравнение е уравнение от вида уравнение където

Решаването на пълни квадратни уравнения е малко по-трудно (само малко) от тези.

Помня, Всяко квадратно уравнение може да бъде решено с помощта на дискриминант! Дори непълна.

Другите методи ще ви помогнат да го направите по-бързо, но ако имате проблеми с квадратни уравнения, първо овладейте решението с помощта на дискриминанта.

1. Решаване на квадратни уравнения с помощта на дискриминант.

Решаването на квадратни уравнения с помощта на този метод е много просто, основното е да запомните последователността от действия и няколко формули.

Ако, тогава уравнението има корен.Трябва да обърнете специално внимание на стъпката. Дискриминант () ни казва броя на корените на уравнението.

  • Ако, тогава формулата в стъпката ще бъде намалена до. Така уравнението ще има само корен.
  • Ако, тогава няма да можем да извлечем корена на дискриминанта на стъпката. Това показва, че уравнението няма корени.

Нека се върнем към нашите уравнения и да разгледаме някои примери.

Пример 9:

Решете уравнението

Етап 1прескачаме.

Стъпка 2.

Намираме дискриминанта:

Това означава, че уравнението има два корена.

Стъпка 3.

Отговор:

Пример 10:

Решете уравнението

Уравнението е представено в стандартна форма, така че Етап 1прескачаме.

Стъпка 2.

Намираме дискриминанта:

Това означава, че уравнението има един корен.

Отговор:

Пример 11:

Решете уравнението

Уравнението е представено в стандартна форма, така че Етап 1прескачаме.

Стъпка 2.

Намираме дискриминанта:

Това означава, че няма да можем да извлечем корена на дискриминанта. Няма корени на уравнението.

Сега знаем как правилно да записваме такива отговори.

Отговор:без корени

2. Решаване на квадратни уравнения с помощта на теоремата на Виета.

Ако си спомняте, има вид уравнение, което се нарича намалено (когато коефициентът a е равен на):

Такива уравнения са много лесни за решаване с помощта на теоремата на Vieta:

Сума от корени даденоквадратно уравнение е равно и произведението на корените е равно.

Пример 12:

Решете уравнението

Това уравнение може да бъде решено с помощта на теоремата на Виета, защото .

Сборът от корените на уравнението е равен, т.е. получаваме първото уравнение:

И произведението е равно на:

Нека съставим и решим системата:

  • И. Сумата е равна на;
  • И. Сумата е равна на;
  • И. Сумата е равна.

и са решението на системата:

Отговор: ; .

Пример 13:

Решете уравнението

Отговор:

Пример 14:

Решете уравнението

Дадено е уравнението, което означава:

Отговор:

КВАДРАТНИ УРАВНЕНИЯ. СРЕДНО НИВО

Какво е квадратно уравнение?

С други думи, квадратното уравнение е уравнение от формата, където - неизвестното, - някои числа и.

Числото се нарича най-високото или първи коефициентквадратно уравнение, - втори коефициент, А - безплатен член.

Защо? Защото, ако уравнението веднага стане линейно, защото ще изчезне.

В този случай и може да бъде равно на нула. В този стол уравнението се нарича непълно. Ако всички членове са налице, това означава, че уравнението е пълно.

Решения на различни видове квадратни уравнения

Методи за решаване на непълни квадратни уравнения:

Първо, нека разгледаме методите за решаване на непълни квадратни уравнения - те са по-прости.

Можем да различим следните видове уравнения:

I., в това уравнение коефициентът и свободният член са равни.

II. , в това уравнение коефициентът е равен.

III. , в това уравнение свободният член е равен на.

Сега нека разгледаме решението за всеки от тези подтипове.

Очевидно това уравнение винаги има само един корен:

Числото на квадрат не може да бъде отрицателно, защото когато умножите две отрицателни или две положителни числа, резултатът винаги ще бъде положително число. Ето защо:

ако, тогава уравнението няма решения;

ако имаме два корена

Няма нужда да запомняте тези формули. Основното нещо, което трябва да запомните, е, че не може да бъде по-малко.

Примери:

Решения:

Отговор:

Никога не забравяйте за корените с отрицателен знак!

Квадратът на число не може да бъде отрицателен, което означава, че уравнението

без корени.

За да напишем накратко, че даден проблем няма решения, използваме иконата за празен набор.

Отговор:

И така, това уравнение има два корена: и.

Отговор:

Нека извадим общия множител извън скобите:

Произведението е равно на нула, ако поне един от множителите е равен на нула. Това означава, че уравнението има решение, когато:

И така, това квадратно уравнение има два корена: и.

Пример:

Решете уравнението.

Решение:

Нека разложим лявата страна на уравнението и намерим корените:

Отговор:

Методи за решаване на пълни квадратни уравнения:

1. Дискриминант

Решаването на квадратни уравнения по този начин е лесно, основното е да запомните последователността от действия и няколко формули. Не забравяйте, че всяко квадратно уравнение може да бъде решено с помощта на дискриминант! Дори непълна.

Забелязахте ли корена от дискриминанта във формулата за корените? Но дискриминантът може да бъде отрицателен. Какво да правя? Трябва да обърнем специално внимание на стъпка 2. Дискриминантът ни казва броя на корените на уравнението.

  • Ако, тогава уравнението има корени:
  • Ако, тогава уравнението има едни и същи корени и всъщност един корен:

    Такива корени се наричат ​​двойни корени.

  • Ако, тогава коренът на дискриминанта не се извлича. Това показва, че уравнението няма корени.

Защо са възможни различен брой корени? Нека се обърнем към геометричния смисъл на квадратното уравнение. Графиката на функцията е парабола:

В специален случай, който е квадратно уравнение, . Това означава, че корените на квадратното уравнение са точките на пресичане с абсцисната ос (ос). Една парабола може изобщо да не пресича оста или да я пресича в една (когато върхът на параболата лежи върху оста) или две точки.

В допълнение, коефициентът е отговорен за посоката на клоновете на параболата. Ако, тогава клоните на параболата са насочени нагоре, а ако - надолу.

Примери:

Решения:

Отговор:

Отговор: .

Отговор:

Това означава, че няма решения.

Отговор: .

2. Теорема на Виета

Много е лесно да използвате теоремата на Vieta: просто трябва да изберете двойка числа, чийто продукт е равен на свободния член на уравнението, а сумата е равна на втория коефициент, взет с обратен знак.

Важно е да запомните, че теоремата на Виета може да се приложи само в редуцирани квадратни уравнения ().

Нека да разгледаме няколко примера:

Пример #1:

Решете уравнението.

Решение:

Това уравнение може да бъде решено с помощта на теоремата на Виета, защото . Други коефициенти: ; .

Сумата от корените на уравнението е:

И произведението е равно на:

Нека изберем двойки числа, чието произведение е равно и проверим дали сборът им е равен:

  • И. Сумата е равна на;
  • И. Сумата е равна на;
  • И. Сумата е равна.

и са решението на системата:

Така и са корените на нашето уравнение.

Отговор: ; .

Пример #2:

Решение:

Нека изберем двойки числа, които дават в произведението, и след това проверим дали сборът им е равен:

и: дават общо.

и: дават общо. За да се получи, е достатъчно просто да се сменят знаците на предполагаемите корени: и в крайна сметка продуктът.

Отговор:

Пример #3:

Решение:

Свободният член на уравнението е отрицателен и следователно произведението на корените е отрицателно число. Това е възможно само ако единият от корените е отрицателен, а другият е положителен. Следователно сумата от корените е равна на разлики в техните модули.

Нека изберем двойки числа, които дават в произведението и чиято разлика е равна на:

и: разликата им е равна - не се вписва;

и: - неподходящи;

и: - неподходящи;

и: - подходящи. Остава само да запомним, че един от корените е отрицателен. Тъй като сборът им трябва да е равен, коренът с по-малкия модул трябва да е отрицателен: . Ние проверяваме:

Отговор:

Пример #4:

Решете уравнението.

Решение:

Дадено е уравнението, което означава:

Свободният член е отрицателен и следователно произведението на корените е отрицателно. И това е възможно само когато единият корен на уравнението е отрицателен, а другият е положителен.

Нека да изберем двойки числа, чийто продукт е равен, и след това да определим кои корени трябва да имат отрицателен знак:

Очевидно само корените и са подходящи за първото условие:

Отговор:

Пример #5:

Решете уравнението.

Решение:

Дадено е уравнението, което означава:

Сборът на корените е отрицателен, което означава, че поне един от корените е отрицателен. Но тъй като техният продукт е положителен, това означава, че и двата корена имат знак минус.

Нека изберем двойки числа, чийто продукт е равен на:

Очевидно корените са числата и.

Отговор:

Съгласете се, много е удобно да излезете с корени устно, вместо да броите този неприятен дискриминант. Опитайте се да използвате теоремата на Vieta възможно най-често.

Но теоремата на Виета е необходима, за да улесни и ускори намирането на корените. За да имате полза от използването му, трябва да доведете действията до автоматизъм. И за това решете още пет примера. Но не изневерявайте: не можете да използвате дискриминант! Само теоремата на Виета:

Решения на задачи за самостоятелна работа:

Задача 1. ((x)^(2))-8x+12=0

Според теоремата на Виета:

Както обикновено, започваме селекцията с парчето:

Не е подходящ, защото количеството;

: количеството е точно това, от което се нуждаете.

Отговор: ; .

Задача 2.

И отново нашата любима теорема на Виета: сборът трябва да е равен и произведението трябва да е равно.

Но тъй като трябва да е не, но, променяме знаците на корените: и (общо).

Отговор: ; .

Задача 3.

Хм... Къде е това?

Трябва да преместите всички условия в една част:

Сборът от корените е равен на произведението.

Добре, спри! Уравнението не е дадено. Но теоремата на Виета е приложима само в дадените уравнения. Така че първо трябва да дадете уравнение. Ако не можете да водите, откажете се от тази идея и я решете по друг начин (например чрез дискриминант). Нека ви напомня, че да се даде квадратно уравнение означава водещият коефициент да бъде равен на:

Страхотен. Тогава сумата от корените е равна на и произведението.

Тук е толкова лесно, колкото да белите круши: все пак това е просто число (съжалявам за тавтологията).

Отговор: ; .

Задача 4.

Безплатният член е отрицателен. Какво е особеното на това? И факт е, че корените ще имат различни знаци. И сега, по време на селекцията, ние проверяваме не сумата на корените, а разликата в техните модули: тази разлика е равна, но продукт.

И така, корените са равни на и, но един от тях е минус. Теоремата на Виета ни казва, че сборът от корените е равен на втория коефициент с противоположен знак, т.е. Това означава, че по-малкият корен ще има минус: и, тъй като.

Отговор: ; .

Задача 5.

Какво трябва да направите първо? Точно така, дайте уравнението:

Отново: избираме факторите на числото и тяхната разлика трябва да бъде равна на:

Корените са равни на и, но един от тях е минус. Който? Сборът им трябва да е равен, което означава, че минусът ще има по-голям корен.

Отговор: ; .

Нека да обобщя:
  1. Теоремата на Vieta се използва само в дадените квадратни уравнения.
  2. Използвайки теоремата на Vieta, можете да намерите корените чрез избор, устно.
  3. Ако уравнението не е дадено или не е намерена подходяща двойка фактори на свободния член, тогава няма цели корени и трябва да го решите по друг начин (например чрез дискриминант).

3. Метод за избор на пълен квадрат

Ако всички членове, съдържащи неизвестното, са представени под формата на членове от съкратени формули за умножение - квадрат на сбора или разликата - тогава след замяна на променливи уравнението може да бъде представено под формата на непълно квадратно уравнение от типа.

Например:

Пример 1:

Решете уравнението: .

Решение:

Отговор:

Пример 2:

Решете уравнението: .

Решение:

Отговор:

Като цяло трансформацията ще изглежда така:

Това предполага: .

Нищо не ти напомня? Това е нещо дискриминационно! Точно така получихме дискриминантната формула.

КВАДРАТНИ УРАВНЕНИЯ. НАКРАТКО ЗА ГЛАВНОТО

Квадратно уравнение- това е уравнение от вида, където - неизвестното, - коефициентите на квадратното уравнение, - свободният член.

Пълно квадратно уравнение- уравнение, в което коефициентите не са равни на нула.

Редуцирано квадратно уравнение- уравнение, в което коефициентът, тоест: .

Непълно квадратно уравнение- уравнение, в което коефициентът и/или свободният член c са равни на нула:

  • ако коефициентът, уравнението изглежда така: ,
  • ако има свободен член, уравнението има формата: ,
  • ако и, уравнението изглежда така: .

1. Алгоритъм за решаване на непълни квадратни уравнения

1.1. Непълно квадратно уравнение от формата, където, :

1) Нека изразим неизвестното: ,

2) Проверете знака на израза:

  • ако, тогава уравнението няма решения,
  • ако, тогава уравнението има два корена.

1.2. Непълно квадратно уравнение от формата, където, :

1) Нека извадим общия множител извън скобите: ,

2) Произведението е равно на нула, ако поне един от множителите е равен на нула. Следователно уравнението има два корена:

1.3. Непълно квадратно уравнение от формата, където:

Това уравнение винаги има само един корен: .

2. Алгоритъм за решаване на пълни квадратни уравнения от вида where

2.1. Решение с помощта на дискриминант

1) Нека приведем уравнението в стандартна форма: ,

2) Нека изчислим дискриминанта по формулата: , която показва броя на корените на уравнението:

3) Намерете корените на уравнението:

  • ако, тогава уравнението има корени, които се намират по формулата:
  • ако, тогава уравнението има корен, който се намира по формулата:
  • ако, тогава уравнението няма корени.

2.2. Решение с помощта на теоремата на Виета

Сумата от корените на редуцираното квадратно уравнение (уравнение от вида където) е равна, а произведението на корените е равно, т.е. , А.

2.3. Решение по метода на избиране на пълен квадрат

С тази математическа програма можете решаване на квадратно уравнение.

Програмата не само дава отговор на проблема, но също така показва процеса на решаване по два начина:
- използване на дискриминант
- използване на теоремата на Vieta (ако е възможно).

Освен това отговорът се показва като точен, а не приблизителен.
Например за уравнението \(81x^2-16x-1=0\) отговорът се показва в следната форма:

$$ x_1 = \frac(8+\sqrt(145))(81), \quad x_2 = \frac(8-\sqrt(145))(81) $$ и не по този начин: \(x_1 = 0,247; \quad x_2 = -0,05\)

Тази програма може да бъде полезна за ученици от гимназията в общообразователните училища при подготовка за тестове и изпити, при проверка на знанията преди Единния държавен изпит и за родители за контрол на решаването на много задачи по математика и алгебра. Или може би ви е твърде скъпо да наемете учител или да купите нови учебници? Или просто искате да си свършите домашното по математика или алгебра възможно най-бързо? В този случай можете да използвате и нашите програми с подробни решения.

По този начин можете да провеждате собствено обучение и/или обучение на вашите по-малки братя или сестри, докато нивото на образование в областта на решаването на проблеми се повишава.

Ако не сте запознати с правилата за въвеждане на квадратен полином, препоръчваме ви да се запознаете с тях.

Правила за въвеждане на квадратен многочлен

Всяка латинска буква може да действа като променлива.
Например: \(x, y, z, a, b, c, o, p, q\) и т.н.

Числата могат да се въвеждат като цели или дробни числа.
Освен това дробните числа могат да се въвеждат не само под формата на десетична, но и под формата на обикновена дроб.

Правила за въвеждане на десетични дроби.
При десетичните дроби дробната част може да бъде отделена от цялата част с точка или запетая.
Например можете да въведете десетични дроби по този начин: 2,5x - 3,5x^2

Правила за въвеждане на обикновени дроби.
Само цяло число може да действа като числител, знаменател и цяла част от дроб.

Знаменателят не може да бъде отрицателен.

При въвеждане на числова дроб числителят се отделя от знаменателя със знак за деление: /
Цялата част е отделена от дробта със знака амперсанд: &
Вход: 3&1/3 - 5&6/5z +1/7z^2
Резултат: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2\)

При въвеждане на израз можете да използвате скоби. В този случай при решаване на квадратно уравнение въведеният израз първо се опростява.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Реши

Беше открито, че някои скриптове, необходими за решаване на този проблем, не са заредени и програмата може да не работи.
Може да сте активирали AdBlock.
В този случай го деактивирайте и опреснете страницата.

JavaScript е деактивиран във вашия браузър.
За да се появи решението, трябва да активирате JavaScript.
Ето инструкции как да активирате JavaScript във вашия браузър.

защото Има много хора, желаещи да решат проблема, вашата заявка е на опашка.
След няколко секунди решението ще се появи по-долу.
Моля Изчакай сек...


Ако ти забеляза грешка в решението, тогава можете да пишете за това във формата за обратна връзка.
Не забравяй посочете коя задачавие решавате какво въведете в полетата.



Нашите игри, пъзели, емулатори:

Малко теория.

Квадратно уравнение и неговите корени. Непълни квадратни уравнения

Всяко от уравненията
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
изглежда като
\(ax^2+bx+c=0, \)
където x е променлива, a, b и c са числа.
В първото уравнение a = -1, b = 6 и c = 1,4, във второто a = 8, b = -7 и c = 0, в третото a = 1, b = 0 и c = 4/9. Такива уравнения се наричат квадратни уравнения.

Определение.
Квадратно уравнениесе нарича уравнение от формата ax 2 +bx+c=0, където x е променлива, a, b и c са някои числа и \(a \neq 0 \).

Числата a, b и c са коефициентите на квадратното уравнение. Числото a се нарича първи коефициент, числото b е втори коефициент, а числото c е свободен член.

Във всяко от уравненията под формата ax 2 +bx+c=0, където \(a\neq 0\), най-голямата степен на променливата x е квадрат. Оттук и името: квадратно уравнение.

Обърнете внимание, че квадратното уравнение се нарича още уравнение от втора степен, тъй като лявата му страна е полином от втора степен.

Нарича се квадратно уравнение, в което коефициентът на x 2 е равен на 1 дадено квадратно уравнение. Например дадените квадратни уравнения са уравненията
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Ако в квадратно уравнение ax 2 +bx+c=0 поне един от коефициентите b или c е равен на нула, тогава такова уравнение се нарича непълно квадратно уравнение. Така уравненията -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 са непълни квадратни уравнения. В първия от тях b=0, във втория c=0, в третия b=0 и c=0.

Има три вида непълни квадратни уравнения:
1) ax 2 +c=0, където \(c \neq 0 \);
2) ax 2 +bx=0, където \(b \neq 0 \);
3) брадва 2 =0.

Нека разгледаме решаването на уравнения от всеки от тези типове.

За да решите непълно квадратно уравнение от формата ax 2 +c=0 за \(c \neq 0 \), преместете неговия свободен член в дясната страна и разделете двете страни на уравнението на a:
\(x^2 = -\frac(c)(a) \Rightarrow x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

Тъй като \(c \neq 0 \), тогава \(-\frac(c)(a) \neq 0 \)

Ако \(-\frac(c)(a)>0\), тогава уравнението има два корена.

Ако \(-\frac(c)(a) За решаване на непълно квадратно уравнение от вида ax 2 +bx=0 с \(b \neq 0 \) факторизираме лявата му страна и получаваме уравнението
\(x(ax+b)=0 \Rightarrow \left\( \begin(array)(l) x=0 \\ ax+b=0 \end(array) \right. \Rightarrow \left\( \begin (масив)(l) x=0 \\ x=-\frac(b)(a) \end(масив) \right. \)

Това означава, че едно непълно квадратно уравнение от формата ax 2 +bx=0 за \(b \neq 0 \) винаги има два корена.

Непълно квадратно уравнение от вида ax 2 =0 е еквивалентно на уравнението x 2 =0 и следователно има един корен 0.

Формула за корените на квадратно уравнение

Нека сега разгледаме как да решаваме квадратни уравнения, в които както коефициентите на неизвестните, така и свободният член са различни от нула.

Нека решим квадратното уравнение в общ вид и в резултат ще получим формулата за корените. След това тази формула може да се използва за решаване на всяко квадратно уравнение.

Решете квадратното уравнение ax 2 +bx+c=0

Разделяйки двете страни на a, получаваме еквивалентното намалено квадратно уравнение
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

Нека трансформираме това уравнение, като изберем квадрата на бинома:
\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2- \left(\frac(b)(2a)\right)^ 2 + \frac(c)(a) = 0 \Стрелка надясно \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \Rightarrow \) \(\left(x+\\frac(b)(2a)\right)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Rightarrow \left(x+\frac(b)(2a)\right)^2 = \frac(b^2-4ac)(4a^2) \Rightarrow \) \(x+\frac(b) )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2) ) \Rightarrow x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2) -4ac) )(2a) \Rightarrow \) \(x = \frac( -b \pm \sqrt(b^2-4ac) )(2a) \)

Коренният израз се нарича дискриминант на квадратно уравнение ax 2 +bx+c=0 ("дискриминант" на латински - дискриминатор). Обозначава се с буквата D, т.е.
\(D = b^2-4ac\)

Сега, използвайки дискриминантната нотация, пренаписваме формулата за корените на квадратното уравнение:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \), където \(D= b^2-4ac \)

Очевидно е, че:
1) Ако D>0, тогава квадратното уравнение има два корена.
2) Ако D=0, тогава квадратното уравнение има един корен \(x=-\frac(b)(2a)\).
3) Ако D По този начин, в зависимост от стойността на дискриминанта, едно квадратно уравнение може да има два корена (за D > 0), един корен (за D = 0) или да няма корени (за D Когато решавате квадратно уравнение, използвайки това формула, препоръчително е да направите следния начин:
1) изчислете дискриминанта и го сравнете с нула;
2) ако дискриминантът е положителен или равен на нула, използвайте формулата на корена; ако дискриминантът е отрицателен, тогава запишете, че няма корени.

Теорема на Виета

Даденото квадратно уравнение ax 2 -7x+10=0 има корени 2 и 5. Сумата от корените е 7, а произведението е 10. Виждаме, че сумата от корените е равна на втория коефициент, взет с противоположния знак, а произведението на корените е равно на свободния член. Всяко редуцирано квадратно уравнение, което има корени, има това свойство.

Сумата от корените на горното квадратно уравнение е равна на втория коефициент, взет с обратен знак, а произведението на корените е равно на свободния член.

Тези. Теоремата на Виета гласи, че корените x 1 и x 2 на редуцираното квадратно уравнение x 2 +px+q=0 имат свойството:
\(\left\( \begin(array)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \end(array) \right. \)

Решаването на уравнения в математиката заема специално място. Този процес е предшестван от много часове изучаване на теория, по време на които ученикът се научава как да решава уравнения, да определя техния тип и довежда умението до пълна автоматизация. Търсенето на корени обаче не винаги има смисъл, тъй като те може просто да не съществуват. Има специални техники за намиране на корени. В тази статия ще анализираме основните функции, техните домейни на дефиниране, както и случаите, когато техните корени липсват.

Кое уравнение няма корени?

Уравнението няма корени, ако няма реални аргументи x, за които уравнението е идентично вярно. За неспециалист тази формулировка, както повечето математически теореми и формули, изглежда много неясна и абстрактна, но това е на теория. На практика всичко става изключително просто. Например: уравнението 0 * x = -53 няма решение, тъй като няма число x, чието произведение с нула би дало нещо различно от нула.

Сега ще разгледаме най-основните видове уравнения.

1. Линейно уравнение

Едно уравнение се нарича линейно, ако дясната и лявата му страна са представени като линейни функции: ax + b = cx + d или в обобщена форма kx + b = 0. Където a, b, c, d са известни числа, а x е неизвестно количество. Кое уравнение няма корени? Примери за линейни уравнения са представени на илюстрацията по-долу.

По принцип линейните уравнения се решават чрез просто прехвърляне на числовата част в една част и съдържанието на x в друга. Резултатът е уравнение във формата mx = n, където m и n са числа, а x е неизвестно. За да намерите x, просто разделете двете страни на m. Тогава x = n/m. Повечето линейни уравнения имат само един корен, но има случаи, когато има безкрайно много корени или никакви корени. Когато m = 0 и n = 0, уравнението приема формата 0 * x = 0. Решението на такова уравнение ще бъде абсолютно всяко число.

Но кое уравнение няма корени?

За m = 0 и n = 0 уравнението няма корени в набора от реални числа. 0 * x = -1; 0 * x = 200 - тези уравнения нямат корени.

2. Квадратно уравнение

Квадратното уравнение е уравнение от формата ax 2 + bx + c = 0 за a = 0. Най-често срещаното решение е чрез дискриминанта. Формулата за намиране на дискриминанта на квадратно уравнение е: D = b 2 - 4 * a * c. След това има два корена x 1,2 = (-b ± √D) / 2 * a.

При D > 0 уравнението има два корена, при D = 0 има един корен. Но кое квадратно уравнение няма корени? Най-лесният начин да наблюдавате броя на корените на квадратно уравнение е като начертаете графика на функцията, която е парабола. При a > 0 клоните са насочени нагоре, при a< 0 ветви опущены вниз. Если дискриминант отрицателен, такое квадратное уравнение не имеет корней на множестве действительных чисел.

Можете също така визуално да определите броя на корените, без да изчислявате дискриминанта. За да направите това, трябва да намерите върха на параболата и да определите в каква посока са насочени клоните. Координатата x на върха може да се определи с помощта на формулата: x 0 = -b / 2a. В този случай y координатата на върха се намира чрез просто заместване на стойността x 0 в оригиналното уравнение.

Квадратното уравнение x 2 - 8x + 72 = 0 няма корени, тъй като има отрицателен дискриминант D = (-8) 2 - 4 * 1 * 72 = -224. Това означава, че параболата не докосва оста x и функцията никога не приема стойност 0, следователно уравнението няма реални корени.

3. Тригонометрични уравнения

Тригонометричните функции се разглеждат върху тригонометрична окръжност, но могат да бъдат представени и в декартова координатна система. В тази статия ще разгледаме две основни тригонометрични функции и техните уравнения: sinx и cosx. Тъй като тези функции образуват тригонометрична окръжност с радиус 1, |sinx| и |cosx| не може да бъде по-голямо от 1. И така, кое уравнение sinx няма корени? Разгледайте графиката на функцията sinx, показана на снимката по-долу.

Виждаме, че функцията е симетрична и има период на повторение 2pi. Въз основа на това можем да кажем, че максималната стойност на тази функция може да бъде 1, а минималната -1. Например изразът cosx = 5 няма да има корени, тъй като абсолютната му стойност е по-голяма от единица.

Това е най-простият пример за тригонометрични уравнения. Всъщност решаването им може да отнеме много страници, в края на които разбирате, че сте използвали грешна формула и трябва да започнете отначало. Понякога, дори ако намерите корените правилно, може да забравите да вземете предвид ограниченията за OD, поради което в отговора се появява допълнителен корен или интервал и целият отговор се превръща в грешка. Затова стриктно спазвайте всички ограничения, защото не всички корени се вписват в обхвата на задачата.

4. Системи уравнения

Система от уравнения е набор от уравнения, съединени с фигурни или квадратни скоби. Къдравите скоби показват, че всички уравнения се изпълняват заедно. Тоест, ако поне едно от уравненията няма корени или противоречи на друго, цялата система няма решение. Квадратните скоби означават думата "или". Това означава, че ако поне едно от уравненията на системата има решение, то цялата система има решение.

Отговорът на системата c е множеството от всички корени на отделните уравнения. А системите с фигурни скоби имат само общи корени. Системите от уравнения могат да включват напълно различни функции, така че такава сложност не ни позволява веднага да кажем кое уравнение няма корени.

В задачниците и учебниците има различни видове уравнения: такива, които имат корени и такива, които нямат. Първо, ако не можете да намерите корените, не мислете, че те изобщо не са там. Може би сте направили грешка някъде, тогава просто трябва внимателно да проверите отново решението си.

Разгледахме най-основните уравнения и техните видове. Сега можете да кажете кое уравнение няма корени. В повечето случаи това не е трудно да се направи. Постигането на успех в решаването на уравнения изисква само внимание и концентрация. Практикувайте повече, това ще ви помогне да се ориентирате в материала много по-добре и по-бързо.

И така, уравнението няма корени, ако:

  • в линейното уравнение mx = n стойността е m = 0 и n = 0;
  • в квадратно уравнение, ако дискриминантът е по-малък от нула;
  • в тригонометрично уравнение във формата cosx = m / sinx = n, ако |m| > 0, |n| > 0;
  • в система от уравнения с къдрави скоби, ако поне едно уравнение няма корени, и с квадратни скоби, ако всички уравнения нямат корени.