Sínus oproti susednému. Sínus, kosínus, tangens a kotangens: definície v trigonometrii, príklady, vzorce


Sinus ostrý uhol α pravouhlého trojuholníka je pomer opak nohy do prepony.
Označuje sa takto: hriech α.

Kosínus Ostrý uhol α pravouhlého trojuholníka je pomer priľahlého ramena k prepone.
Označuje sa takto: cos α.


Tangenta
ostrý uhol α je pomer protiľahlej strany k priľahlej strane.
Označuje sa takto: tg α.

Kotangens ostrý uhol α je pomer priľahlej strany k protiľahlej strane.
Označuje sa takto: ctg α.

Sínus, kosínus, tangens a kotangens uhla závisia len od veľkosti uhla.

pravidlá:

Základné goniometrické identity v pravouhlom trojuholníku:

(α - ostrý uhol oproti nohe b a priľahlé k nohe a . Side s – prepona. β – druhý ostrý uhol).

b
hriech α = -
c

sin 2 α + cos 2 α = 1

a
cos α = -
c

1
1 + tan 2 α = --
cos 2 α

b
opálenie α = -
a

1
1 + ctg 2 α = --
hriech 2 α

a
ctg α = -
b

1 1
1 + -- = --
tan 2 α sin 2 α

hriech α
tg α = --
čos α


Keď sa ostrý uhol zväčšuje
hriech α atan α zvýšenie, acos α klesá.


Pre akýkoľvek ostrý uhol α:

sin (90° – α) = cos α

cos (90° – α) = sin α

Príklad-vysvetlenie:

Vlož pravouhlý trojuholník ABC
AB = 6,
BC = 3,
uhol A = 30°.

Poďme zistiť sínus uhla A a kosínus uhla B.

Riešenie .

1) Najprv nájdeme hodnotu uhla B. Tu je všetko jednoduché: keďže v pravouhlom trojuholníku je súčet ostrých uhlov 90º, potom uhol B = 60º:

B = 90º – 30º = 60º.

2) Vypočítajme sin A. Vieme, že sínus sa rovná pomeru opačnej strany k prepone. Pre uhol A je opačná strana strana BC. Takže:

BC 3 1
hriech A = -- = - = -
AB 6 2

3) Teraz vypočítajme cos B. Vieme, že kosínus sa rovná pomeru susednej vetvy k prepone. Pre uhol B je susedná noha rovnaká strana BC. To znamená, že opäť musíme vydeliť BC AB - to znamená, že vykonáme rovnaké akcie ako pri výpočte sínusu uhla A:

BC 3 1
cos B = -- = - = -
AB 6 2

Výsledkom je:
sin A = cos B = 1/2.

sin 30º = cos 60º = 1/2.

Z toho vyplýva, že v pravouhlom trojuholníku je sínus jedného ostrého uhla rovný kosínusu iného ostrého uhla - a naopak. Presne toto znamenajú naše dva vzorce:
sin (90° – α) = cos α
cos (90° – α) = sin α

Presvedčíme sa o tom ešte raz:

1) Nech α = 60º. Dosadením hodnoty α do sínusového vzorca dostaneme:
hriech (90º – 60º) = cos 60º.
sin 30º = cos 60º.

2) Nech α = 30º. Dosadením hodnoty α do kosínusového vzorca dostaneme:
cos (90° – 30°) = sin 30°.
cos 60° = hriech 30°.

(Viac informácií o trigonometrii nájdete v časti Algebra)

Trigonometria je odbor matematickej vedy, ktorý študuje goniometrické funkcie a ich využitie v geometrii. Vývoj trigonometrie sa začal v starovekom Grécku. Počas stredoveku vedci z Blízkeho východu a Indie významne prispeli k rozvoju tejto vedy.

Tento článok je venovaný základným pojmom a definíciám trigonometrie. Rozoberá definície základných goniometrických funkcií: sínus, kosínus, tangens a kotangens. Ich význam je vysvetlený a znázornený v kontexte geometrie.

Yandex.RTB R-A-339285-1

Pôvodne boli definície goniometrických funkcií, ktorých argumentom je uhol, vyjadrené ako pomer strán pravouhlého trojuholníka.

Definície goniometrických funkcií

Sínus uhla (sin α) je pomer nohy oproti tomuto uhlu k prepone.

Kosínus uhla (cos α) - pomer priľahlej nohy k prepone.

Tangenta uhla (t g α) - pomer protiľahlej strany k susednej.

Kotangens uhla (c t g α) - pomer priľahlej strany k protiľahlej strane.

Tieto definície sú uvedené pre ostrý uhol pravouhlého trojuholníka!

Uveďme ilustráciu.

V trojuholníku ABC s pravým uhlom C sa sínus uhla A rovná pomeru ramena BC k prepone AB.

Definície sínus, kosínus, tangens a kotangens vám umožňujú vypočítať hodnoty týchto funkcií zo známych dĺžok strán trojuholníka.

Dôležité mať na pamäti!

Rozsah hodnôt sínus a kosínus je od -1 do 1. Inými slovami, sínus a kosínus nadobúdajú hodnoty od -1 do 1. Rozsah hodnôt dotyčnice a kotangens je celá číselná os, to znamená, že tieto funkcie môžu nadobúdať ľubovoľné hodnoty.

Vyššie uvedené definície platia pre ostré uhly. V trigonometrii sa zavádza pojem uhla natočenia, ktorého hodnota na rozdiel od ostrého uhla nie je obmedzená na 0 až 90 stupňov. Uhol natočenia v stupňoch alebo radiánoch je vyjadrený ľubovoľným reálnym číslom od - ∞ do + ∞ .

V tejto súvislosti môžeme definovať sínus, kosínus, tangens a kotangens uhla ľubovoľnej veľkosti. Predstavme si jednotkovú kružnicu so stredom v počiatku karteziánskeho súradnicového systému.

Počiatočný bod A so súradnicami (1, 0) sa otáča okolo stredu jednotkovej kružnice o určitý uhol α a smeruje do bodu A 1. Definícia je daná z hľadiska súradníc bodu A 1 (x, y).

Sínus (sin) uhla natočenia

Sínus uhla natočenia α je ordináta bodu A 1 (x, y). hriech α = y

Kosínus (cos) uhla natočenia

Kosínus uhla natočenia α je úsečka bodu A 1 (x, y). cos α = x

Tangenta (tg) uhla natočenia

Tangenta uhla natočenia α je pomerom ordináty bodu A 1 (x, y) k jeho os. t g α = y x

Kotangens (ctg) uhla natočenia

Kotangens uhla natočenia α je pomer úsečky bodu A 1 (x, y) k jeho ordinate. c t g α = x y

Sínus a kosínus sú definované pre akýkoľvek uhol natočenia. Je to logické, pretože úsečka a ordináta bodu po otočení sa dajú určiť v akomkoľvek uhle. Iná situácia je pri tangente a kotangens. Tangenta nie je definovaná, keď bod po otočení smeruje k bodu s nulovou osou (0, 1) a (0, - 1). V takýchto prípadoch výraz pre dotyčnicu t g α = y x jednoducho nedáva zmysel, pretože obsahuje delenie nulou. Podobná situácia je s kotangensom. Rozdiel je v tom, že kotangens nie je definovaný v prípadoch, keď ordináta bodu ide na nulu.

Dôležité mať na pamäti!

Sínus a kosínus sú definované pre ľubovoľné uhly α.

Tangenta je definovaná pre všetky uhly okrem α = 90° + 180° k, k ∈ Z (α = π 2 + π k, k ∈ Z)

Kotangens je definovaný pre všetky uhly okrem α = 180° k, k ∈ Z (α = π k, k ∈ Z)

Pri riešení praktických príkladov nehovorte „sínus uhla natočenia α“. Slová „uhol natočenia“ sú jednoducho vynechané, čo znamená, že už z kontextu je jasné, o čom sa diskutuje.

čísla

A čo definícia sínusu, kosínusu, tangensu a kotangensu čísla a nie uhla natočenia?

Sínus, kosínus, tangens, kotangens čísla

Sínus, kosínus, tangens a kotangens čísla t je číslo, ktoré sa rovná sínusu, kosínusu, tangensu a kotangensu v t radián.

Napríklad sínus čísla 10 π sa rovná sínusu uhla natočenia 10 π rad.

Existuje iný prístup k určovaniu sínusu, kosínusu, tangensu a kotangensu čísla. Poďme sa na to pozrieť bližšie.

Akékoľvek skutočné číslo t bod na jednotkovej kružnici je spojený so stredom v počiatku pravouhlého karteziánskeho súradnicového systému. Sínus, kosínus, dotyčnica a kotangens sú určené súradnicami tohto bodu.

Počiatočný bod na kružnici je bod A so súradnicami (1, 0).

Kladné číslo t

Záporné číslo t zodpovedá bodu, do ktorého pôjde začiatočný bod, ak sa bude pohybovať po kružnici proti smeru hodinových ručičiek a prejde dráhu t.

Teraz, keď sme vytvorili spojenie medzi číslom a bodom na kružnici, prejdeme k definícii sínusu, kosínusu, tangensu a kotangensu.

Sínus (hriech) t

Sínus čísla t- súradnica bodu na jednotkovej kružnici zodpovedajúca číslu t. hriech t = y

Kosínus (cos) t

Kosínus čísla t- súradnica bodu jednotkovej kružnice zodpovedajúcej číslu t. cos t = x

Tangenta (tg) t

Tangenta čísla t- pomer zvislej osi k osovej osi bodu na jednotkovej kružnici zodpovedajúcej číslu t. t g t = y x = sin t cos t

Najnovšie definície sú v súlade s definíciou uvedenou na začiatku tohto odseku a nie sú v rozpore s ňou. Ukážte na kruh zodpovedajúci číslu t, sa zhoduje s bodom, do ktorého ide počiatočný bod po otočení o uhol t radián.

Goniometrické funkcie uhlového a číselného argumentu

Každá hodnota uhla α zodpovedá určitej hodnote sínusu a kosínusu tohto uhla. Rovnako ako všetky uhly α iné ako α = 90 ° + 180 ° k, k ∈ Z (α = π 2 + π k, k ∈ Z) zodpovedajú určitej hodnote dotyčnice. Kotangens, ako je uvedené vyššie, je definovaný pre všetky α okrem α = 180° k, k ∈ Z (α = π k, k ∈ Z).

Môžeme povedať, že sin α, cos α, t g α, c t g α sú funkcie uhla alfa, alebo funkcie uhlového argumentu.

Podobne môžeme hovoriť o sínus, kosínus, tangens a kotangens ako funkcie číselného argumentu. Každé skutočné číslo t zodpovedá určitej hodnote sínusu alebo kosínusu čísla t. Všetky čísla iné ako π 2 + π · k, k ∈ Z zodpovedajú tangensovej hodnote. Kotangens je podobne definovaný pre všetky čísla okrem π · k, k ∈ Z.

Základné funkcie trigonometrie

Sínus, kosínus, tangens a kotangens sú základné goniometrické funkcie.

Z kontextu je zvyčajne jasné, s ktorým argumentom goniometrickej funkcie (uhlovým argumentom alebo číselným argumentom) máme do činenia.

Vráťme sa k definíciám uvedeným na samom začiatku a k uhlu alfa, ktorý leží v rozmedzí od 0 do 90 stupňov. Trigonometrické definície sínus, kosínus, tangens a kotangens sú úplne v súlade s geometrickými definíciami danými pomermi strán pravouhlého trojuholníka. Ukážme to.

Zoberme si jednotkový kruh so stredom v pravouhlej karteziánskej súradnicovej sústave. Otočme počiatočný bod A (1, 0) o uhol až 90 stupňov a z výsledného bodu A 1 (x, y) nakreslime kolmicu na os x. Vo výslednom pravouhlom trojuholníku sa uhol A 1 O H rovná uhlu natočenia α, dĺžka ramena O H sa rovná osovej osi bodu A 1 (x, y). Dĺžka ramena oproti uhlu sa rovná ordinate bodu A 1 (x, y) a dĺžka prepony sa rovná jednej, pretože je to polomer jednotkovej kružnice.

V súlade s definíciou z geometrie sa sínus uhla α rovná pomeru opačnej strany k prepone.

sin α = A 1 H O A 1 = y 1 = y

To znamená, že určenie sínusu ostrého uhla v pravouhlom trojuholníku pomocou pomeru strán je ekvivalentné určeniu sínusu uhla natočenia α, pričom alfa leží v rozsahu od 0 do 90 stupňov.

Podobne je možné ukázať zhodu definícií pre kosínus, tangens a kotangens.

Ak si všimnete chybu v texte, zvýraznite ju a stlačte Ctrl+Enter

Jednou z oblastí matematiky, s ktorou žiaci najviac zápasia, je trigonometria. Nie je prekvapujúce: na slobodné zvládnutie tejto oblasti vedomostí potrebujete priestorové myslenie, schopnosť nájsť sínus, kosínus, tangens, kotangens pomocou vzorcov, zjednodušiť výrazy a vedieť použiť číslo pi v výpočty. Navyše pri dokazovaní viet musíte vedieť používať trigonometriu, a to si vyžaduje buď rozvinutú matematickú pamäť, alebo schopnosť odvodiť zložité logické reťazce.

Počiatky trigonometrie

Zoznámenie sa s touto vedou by malo začať definíciou sínusu, kosínusu a tangensu uhla, ale najprv musíte pochopiť, čo robí trigonometria vo všeobecnosti.

Historicky hlavným predmetom štúdia v tomto odbore matematickej vedy boli pravouhlé trojuholníky. Prítomnosť uhla 90 stupňov umožňuje vykonávať rôzne operácie, ktoré umožňujú určiť hodnoty všetkých parametrov príslušného obrázku pomocou dvoch strán a jedného uhla alebo dvoch uhlov a jednej strany. V minulosti si tento vzor ľudia všimli a začali ho aktívne využívať pri stavbe budov, navigácii, astronómii a dokonca aj v umení.

Prvé štádium

Spočiatku ľudia hovorili o vzťahu medzi uhlami a stranami výlučne na príklade pravouhlých trojuholníkov. Potom boli objavené špeciálne vzorce, ktoré umožnili rozšíriť hranice použitia v každodennom živote tohto odvetvia matematiky.

Štúdium trigonometrie v škole sa dnes začína pravouhlými trojuholníkmi, po ktorých študenti využívajú nadobudnuté vedomosti z fyziky a riešenia abstraktných goniometrických rovníc, ktoré začínajú už na strednej škole.

Sférická trigonometria

Neskôr, keď sa veda dostala na ďalšiu úroveň vývoja, začali sa vzorce so sínusom, kosínusom, dotyčnicou a kotangensom používať v sférickej geometrii, kde platia iné pravidlá a súčet uhlov v trojuholníku je vždy viac ako 180 stupňov. Táto časť sa v škole neštuduje, ale je potrebné vedieť o jej existencii, prinajmenšom preto, že zemský povrch a povrch akejkoľvek inej planéty je konvexný, čo znamená, že akékoľvek povrchové označenie bude mať „oblúkový tvar“. trojrozmerný priestor.

Vezmite zemeguľu a niť. Pripevnite niť na ľubovoľné dva body na zemeguli tak, aby bola napnutá. Upozorňujeme - nadobudlo tvar oblúka. Takýmito formami sa zaoberá sférická geometria, ktorá sa využíva v geodézii, astronómii a iných teoretických a aplikovaných odboroch.

Správny trojuholník

Keď sme sa trochu naučili o spôsoboch používania trigonometrie, vráťme sa k základnej trigonometrii, aby sme ďalej pochopili, čo sú sínus, kosínus, tangens, aké výpočty je možné s ich pomocou vykonať a aké vzorce použiť.

Prvým krokom je pochopenie pojmov súvisiacich s pravouhlým trojuholníkom. Po prvé, prepona je strana opačná k uhlu 90 stupňov. Je najdlhšia. Pamätáme si, že podľa Pytagorovej vety sa jej číselná hodnota rovná odmocnine súčtu štvorcov ostatných dvoch strán.

Napríklad, ak sú obe strany 3 a 4 centimetre, dĺžka prepony bude 5 centimetrov. Mimochodom, starí Egypťania o tom vedeli asi pred štyri a pol tisíc rokmi.

Dve zostávajúce strany, ktoré tvoria pravý uhol, sa nazývajú nohy. Okrem toho si musíme uvedomiť, že súčet uhlov v trojuholníku v pravouhlom súradnicovom systéme sa rovná 180 stupňom.

Definícia

Nakoniec, s pevným pochopením geometrického základu, sa môžeme obrátiť na definíciu sínusu, kosínusu a tangensu uhla.

Sínus uhla je pomer protiľahlej vetvy (t.j. strany protiľahlej k požadovanému uhlu) k prepone. Kosínus uhla je pomer priľahlej strany k prepone.

Pamätajte, že ani sínus, ani kosínus nemôžu byť väčšie ako jedna! prečo? Pretože prepona je štandardne najdlhšia, bez ohľadu na to, aká dlhá je prepona, bude kratšia ako prepona, čo znamená, že ich pomer bude vždy menší ako jedna. Ak teda v odpovedi na problém dostanete sínus alebo kosínus s hodnotou väčšou ako 1, hľadajte chybu vo výpočtoch alebo zdôvodňovaní. Táto odpoveď je jednoznačne nesprávna.

Nakoniec tangens uhla je pomer protiľahlej strany k susednej strane. Delenie sínusu kosínusom poskytne rovnaký výsledok. Pozrite sa: podľa vzorca vydelíme dĺžku strany preponou, potom vydelíme dĺžkou druhej strany a vynásobíme preponou. Dostaneme teda rovnaký vzťah ako pri definícii dotyčnice.

Kotangens je teda pomer strany susediacej s rohom k opačnej strane. Rovnaký výsledok dostaneme vydelením jednej dotyčnicou.

Takže sme sa pozreli na definície toho, čo sú sínus, kosínus, tangens a kotangens, a môžeme prejsť k vzorcom.

Najjednoduchšie vzorce

V trigonometrii sa nezaobídete bez vzorcov - ako bez nich nájsť sínus, kosínus, tangens, kotangens? Ale to je presne to, čo sa vyžaduje pri riešení problémov.

Prvý vzorec, ktorý potrebujete vedieť, keď začnete študovať trigonometriu, hovorí, že súčet druhých mocnín sínusu a kosínusu uhla sa rovná jednej. Tento vzorec je priamym dôsledkom Pytagorovej vety, ale šetrí čas, ak potrebujete poznať veľkosť uhla a nie strany.

Veľa žiakov si nevie zapamätať druhý vzorec, ktorý je tiež veľmi obľúbený pri riešení školských úloh: súčet jednotky a druhej mocniny tangens uhla sa rovná jednej delenej druhou mocninou kosínusu uhla. Pozrime sa bližšie: toto je rovnaké tvrdenie ako v prvom vzorci, len obe strany identity boli rozdelené druhou mocninou kosínusu. Ukazuje sa, že jednoduchá matematická operácia úplne zmení goniometrický vzorec na nerozoznanie. Pamätajte: s vedomím toho, čo sú sínus, kosínus, tangens a kotangens, transformačných pravidiel a niekoľkých základných vzorcov, môžete kedykoľvek odvodiť požadované zložitejšie vzorce na hárku papiera.

Vzorce pre dvojité uhly a sčítanie argumentov

Ďalšie dva vzorce, ktoré sa musíte naučiť, súvisia s hodnotami sínusu a kosínusu pre súčet a rozdiel uhlov. Sú uvedené na obrázku nižšie. Upozorňujeme, že v prvom prípade sa sínus a kosínus vynásobia v oboch prípadoch a v druhom prípade sa pripočíta párový súčin sínusu a kosínusu.

Existujú aj vzorce spojené s argumentmi dvojitého uhla. Sú úplne odvodené od predchádzajúcich - v praxi sa ich snažte získať sami tým, že zoberiete uhol alfa rovný beta uhlu.

Nakoniec si všimnite, že vzorce s dvojitým uhlom možno preusporiadať, aby sa znížila mocnina sínusu, kosínusu a dotyčnice alfa.

Vety

Dve hlavné vety v základnej trigonometrii sú sínusová a kosínusová. Pomocou týchto teorémov môžete ľahko pochopiť, ako nájsť sínus, kosínus a tangens, a teda aj plochu postavy a veľkosť každej strany atď.

Sínusová veta hovorí, že vydelenie dĺžky každej strany trojuholníka opačným uhlom vedie k rovnakému číslu. Okrem toho sa toto číslo bude rovnať dvom polomerom kružnice opísanej, teda kružnice obsahujúcej všetky body daného trojuholníka.

Kosínusová veta zovšeobecňuje Pytagorovu vetu a premieta ju na ľubovoľné trojuholníky. Ukazuje sa, že od súčtu štvorcov dvoch strán odpočítajte ich súčin vynásobený dvojitým kosínusom susedného uhla - výsledná hodnota sa bude rovnať štvorcu tretej strany. Pytagorova veta sa teda ukazuje ako špeciálny prípad kosínusovej vety.

Neopatrné chyby

Aj keď vieme, čo sú sínus, kosínus a tangenta, je ľahké urobiť chybu kvôli neprítomnosti alebo chybe v najjednoduchších výpočtoch. Aby sme sa vyhli takýmto chybám, poďme sa pozrieť na tie najpopulárnejšie.

Po prvé, nemali by ste prevádzať zlomky na desatinné miesta, kým nedosiahnete konečný výsledok – odpoveď môžete ponechať ako zlomok, pokiaľ nie je v podmienkach uvedené inak. Takúto transformáciu nemožno nazvať chybou, ale treba pamätať na to, že v každej fáze problému sa môžu objaviť nové korene, ktoré by sa podľa myšlienky autora mali znížiť. V tomto prípade budete strácať čas zbytočnými matematickými operáciami. Platí to najmä pre hodnoty ako odmocnina z troch alebo odmocnina z dvoch, pretože sa vyskytujú v problémoch na každom kroku. To isté platí pre zaokrúhľovanie „škaredých“ čísel.

Ďalej si všimnite, že kosínusová veta sa vzťahuje na akýkoľvek trojuholník, ale nie na Pytagorovu vetu! Ak omylom zabudnete odpočítať dvojnásobok súčinu strán vynásobeného kosínusom uhla medzi nimi, dostanete nielen úplne nesprávny výsledok, ale preukážete aj úplné nepochopenie predmetu. Toto je horšie ako neopatrná chyba.

Po tretie, nezamieňajte hodnoty pre uhly 30 a 60 stupňov pre sínusy, kosínusy, tangenty, kotangensy. Zapamätajte si tieto hodnoty, pretože sínus 30 stupňov sa rovná kosínusu 60 a naopak. Je ľahké ich zameniť, v dôsledku čoho nevyhnutne získate chybný výsledok.

Aplikácia

Mnohí študenti sa so začiatkom štúdia trigonometrie neponáhľajú, pretože nerozumejú jej praktickému významu. Čo je sínus, kosínus, tangens pre inžiniera alebo astronóma? Ide o koncepty, pomocou ktorých môžete vypočítať vzdialenosť k vzdialeným hviezdam, predpovedať pád meteoritu alebo poslať výskumnú sondu na inú planétu. Bez nich nie je možné postaviť budovu, navrhnúť auto, vypočítať zaťaženie povrchu alebo trajektóriu objektu. A to sú len tie najzreteľnejšie príklady! Koniec koncov, trigonometria v tej či onej forme sa používa všade, od hudby po medicínu.

Konečne

Takže ste sínus, kosínus, tangenta. Môžete ich použiť pri výpočtoch a úspešne vyriešiť školské úlohy.

Celý zmysel trigonometrie spočíva v tom, že pomocou známych parametrov trojuholníka musíte vypočítať neznáme. Celkovo existuje šesť parametrov: dĺžka troch strán a veľkosť troch uhlov. Jediný rozdiel v úlohách spočíva v tom, že sú uvedené rôzne vstupné údaje.

Teraz viete, ako nájsť sínus, kosínus, tangentu na základe známych dĺžok nôh alebo prepony. Keďže tieto pojmy neznamenajú nič iné ako pomer a pomer je zlomok, hlavným cieľom úlohy trigonometrie je nájsť korene obyčajnej rovnice alebo sústavy rovníc. A tu vám pomôže bežná školská matematika.

Štúdium trigonometrie začneme pravouhlým trojuholníkom. Definujme, čo je sínus a kosínus, ako aj tangens a kotangens ostrého uhla. Toto sú základy trigonometrie.

Pripomeňme si to pravý uhol je uhol rovný 90 stupňom. Inými slovami, polovičný natočený uhol.

Ostrý roh- menej ako 90 stupňov.

Tupý uhol- väčší ako 90 stupňov. Vo vzťahu k takémuto uhla nie je „tupý“ urážkou, ale matematickým výrazom :-)

Nakreslíme pravouhlý trojuholník. Pravý uhol sa zvyčajne označuje ako . Upozorňujeme, že strana oproti rohu je označená rovnakým písmenom, len malým. Takže strana protiľahlá uhol A je označený .

Uhol je označený príslušným gréckym písmenom.

Hypotenzia pravouhlého trojuholníka je strana opačná k pravému uhlu.

Nohy- strany ležiace oproti ostrým uhlom.

Noha ležiaca oproti uhlu sa nazýva opak(vzhľadom na uhol). Druhá noha, ktorá leží na jednej zo strán uhla, sa nazýva priľahlé.

Sinus Ostrý uhol v pravouhlom trojuholníku je pomer opačnej strany k prepone:

Kosínus ostrý uhol v pravouhlom trojuholníku - pomer priľahlej nohy k prepone:

Tangenta ostrý uhol v pravouhlom trojuholníku - pomer protiľahlej strany k susednej:

Iná (ekvivalentná) definícia: dotyčnica ostrého uhla je pomer sínusu uhla k jeho kosínu:

Kotangens ostrý uhol v pravouhlom trojuholníku - pomer susednej strany k opačnej strane (alebo, ktorý je rovnaký, pomer kosínusu k sínusu):

Všimnite si základné vzťahy pre sínus, kosínus, tangens a kotangens nižšie. Budú sa nám hodiť pri riešení problémov.

Dokážme niektoré z nich.

Dobre, dali sme definície a zapísali vzorce. Prečo však stále potrebujeme sínus, kosínus, tangens a kotangens?

My to vieme súčet uhlov ľubovoľného trojuholníka sa rovná.

Poznáme vzťah medzi strany správny trojuholník. Toto je Pytagorova veta: .

Ukazuje sa, že ak poznáte dva uhly v trojuholníku, môžete nájsť tretí. Keď poznáte dve strany pravouhlého trojuholníka, môžete nájsť tretiu. To znamená, že uhly majú svoj vlastný pomer a strany majú svoj vlastný. Čo však robiť, ak v pravouhlom trojuholníku poznáte jeden uhol (okrem pravého) a jednu stranu, no potrebujete nájsť ostatné strany?

S tým sa ľudia v minulosti stretávali pri tvorbe máp oblasti a hviezdnej oblohy. Koniec koncov, nie je vždy možné priamo merať všetky strany trojuholníka.

Sínus, kosínus a tangenta - nazývajú sa tiež funkcie trigonometrických uhlov- dať vzťahy medzi strany A rohy trojuholník. Keď poznáte uhol, môžete nájsť všetky jeho trigonometrické funkcie pomocou špeciálnych tabuliek. A keď poznáte sínusy, kosínusy a dotyčnice uhlov trojuholníka a jednej z jeho strán, môžete nájsť zvyšok.

Nakreslíme tiež tabuľku hodnôt sínusu, kosínusu, tangensu a kotangensu pre „dobré“ uhly od do.

Všimnite si prosím dve červené čiarky v tabuľke. Pri vhodných hodnotách uhla tangens a kotangens neexistujú.

Pozrime sa na niekoľko problémov s trigonometriou z FIPI Task Bank.

1. V trojuholníku je uhol , . Nájsť .

Problém je vyriešený do štyroch sekúnd.

Pretože , .

2. V trojuholníku je uhol , , . Nájsť .

Poďme to nájsť pomocou Pytagorovej vety.

Problém je vyriešený.

Často sú v problémoch trojuholníky s uhlami a alebo s uhlami a. Zapamätajte si pre nich základné pomery naspamäť!

Pre trojuholník s uhlami a protiľahlou nohou je uhol v rovný polovica prepony.

Trojuholník s uhlami a je rovnoramenný. V ňom je prepona krát väčšia ako noha.

Pozreli sme sa na problémy riešenia pravouhlých trojuholníkov – teda hľadanie neznámych strán či uhlov. Ale to nie je všetko! V Jednotnej štátnej skúške z matematiky je veľa problémov, ktoré zahŕňajú sínus, kosínus, tangens alebo kotangens vonkajšieho uhla trojuholníka. Viac o tom v ďalšom článku.

Pomer opačnej strany k prepone sa nazýva sínus ostrého uhla správny trojuholník.

\sin \alpha = \frac(a)(c)

Kosínus ostrého uhla pravouhlého trojuholníka

Pomer susednej nohy k prepone sa nazýva kosínus ostrého uhla správny trojuholník.

\cos \alpha = \frac(b)(c)

Tangenta ostrého uhla pravouhlého trojuholníka

Pomer opačnej strany k susednej sa nazýva dotyčnica ostrého uhla správny trojuholník.

tg \alpha = \frac(a)(b)

Kotangens ostrého uhla pravouhlého trojuholníka

Pomer priľahlej strany k opačnej strane sa nazýva kotangens ostrého uhla správny trojuholník.

ctg \alpha = \frac(b)(a)

Sínus ľubovoľného uhla

Nazýva sa ordináta bodu na jednotkovej kružnici, ktorej zodpovedá uhol \alpha sínus ľubovoľného uhla rotácia \alpha .

\sin \alpha=y

Kosínus ľubovoľného uhla

Nazýva sa úsečka bodu na jednotkovej kružnici, ktorej zodpovedá uhol \alpha kosínus ľubovoľného uhla rotácia \alpha .

\cos \alpha=x

Tangenta ľubovoľného uhla

Pomer sínusu ľubovoľného uhla natočenia \alfa k jeho kosínusu sa nazýva dotyčnica ľubovoľného uhla rotácia \alpha .

tan \alpha = y_(A)

tg \alpha = \frac(\sin \alpha)(\cos \alpha)

Kotangens ľubovoľného uhla

Pomer kosínusu ľubovoľného uhla natočenia \alfa k jeho sínusu sa nazýva kotangens ľubovoľného uhla rotácia \alpha .

ctg\alpha =x_(A)

ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

Príklad nájdenia ľubovoľného uhla

Ak \alpha je nejaký uhol AOM, kde M je bod jednotkovej kružnice, potom

\sin \alpha=y_(M) , \cos \alpha=x_(M) , tg \alpha=\frac(y_(M))(x_(M)), ctg \alpha=\frac(x_(M))(y_(M)).

Napríklad ak \uhol AOM = -\frac(\pi)(4), potom: ordináta bodu M sa rovná -\frac(\sqrt(2))(2), úsečka sa rovná \frac(\sqrt(2))(2) a preto

\sin \left (-\frac(\pi)(4) \right)=-\frac(\sqrt(2))(2);

\cos \left (\frac(\pi)(4) \right)=\frac(\sqrt(2))(2);

tg;

ctg \left (-\frac(\pi)(4) \right)=-1.

Tabuľka hodnôt sínusov kosínusov dotyčníc kotangens

Hodnoty hlavných často sa vyskytujúcich uhlov sú uvedené v tabuľke:

0^(\circ) (0)30^(\circ)\vľavo(\frac(\pi)(6)\vpravo) 45^(\circ)\vľavo(\frac(\pi)(4)\vpravo) 60^(\circ)\vľavo(\frac(\pi)(3)\vpravo) 90^(\circ)\vľavo(\frac(\pi)(2)\vpravo) 180^(\circ)\vľavo(\pi\vpravo)270^(\circ)\vľavo(\frac(3\pi)(2)\vpravo) 360^(\circ)\vľavo(2\pi\vpravo)
\sin\alfa0 \frac12\frac(\sqrt 2)(2)\frac(\sqrt 3)(2)1 0 −1 0
\cos\alpha1 \frac(\sqrt 3)(2)\frac(\sqrt 2)(2)\frac120 −1 0 1
tg\alpha0 \frac(\sqrt 3)(3)1 \sqrt30 0
ctg\alpha\sqrt31 \frac(\sqrt 3)(3)0 0