Що означає скоротити дріб визначення. Калькулятор онлайн. Скорочення дробів (неправильних, змішаних)


У цій статті ми розглянемо основні дії з алгебраїчними дробами:

  • скорочення дробів
  • множення дробів
  • розподіл дробів

Почнемо з скорочення алгебраїчних дробів.

Здавалося б, алгоритмочевидний.

Щоб скоротити алгебраїчні дроби, потрібно

1. Розкласти чисельник та знаменник дробу на множники.

2. Скоротити однакові множники.

Проте, школярі часто роблять помилку, "зменшуючи" не множники, а доданки. Наприклад, є любителі, які в дробі "зменшують" і отримують в результаті, що, зрозуміло, неправильно.

Розглянемо приклади:

1. Скоротити дріб:

1. Розкладемо на множники чисельник за формулою квадрата суми, а знаменник за формулою різниці квадратів

2. Розділимо чисельник та знаменник на

2. Скоротити дріб:

1. Розкладемо на множники чисельник. Так як чисельник містить чотири доданки, застосуємо угруповання.

2. Розкладемо на множники знаменник. Також застосуємо угруповання.

3. Запишемо дріб, який у нас вийшов і скоротимо однакові множники:

Розмноження алгебраїчних дробів.

При множенні дробів алгебри ми чисельник множимо на чисельник, а знаменник множимо на знаменник.


Важливо!Не потрібно поспішати виконувати множення у чисельнику та знаменнику дробу. Після того, як ми записали в чисельнику добуток чисельників дробів, а в знаменнику - добуток знаменників, потрібно розкласти на множники кожен множник і скоротити дріб.

Розглянемо приклади:

3. Спростіть вираз:

1. Запишемо добуток дробів: у чисельнику добуток чисельників, а у знаменнику добуток знаменників:

2. Розкладемо кожну дужку на множники:

Тепер нам потрібно скоротити однакові множники. Зауважимо, що вирази і відрізняються лише знаком: і в результаті розподілу першого виразу на друге отримаємо -1.

Отже,

Розподіл алгебраїчних дробів ми виконуємо за таким правилом:


Тобто щоб розділити на дріб, потрібно помножити на "перевернутий".

Ми бачимо, що розподіл дробів зводиться до множення, а множення, зрештою, зводиться до скорочення дробів.

Розглянемо приклад:

4. Спростіть вираз:

Розберемося в тому, що таке скорочення дробів, навіщо і як скорочувати дроби, наведемо правило скорочення дробів та приклади його використання.

Yandex.RTB R-A-339285-1

Що таке "скорочення дробів"

Скоротити дріб

Скоротити дріб - означає розділити її чисельник і знаменник на спільний дільник, позитивний та відмінний від одиниці.

В результаті такої дії вийде дріб з новим чисельником і знаменником, що дорівнює вихідному дробу.

Наприклад, візьмемо звичайний дріб 24 і скоротимо його. Розділимо чисельник та знаменник на 2 , внаслідок чого отримаємо 6 24 = 6 ÷ 2 24 ÷ 2 = 3 12 . У цьому прикладі ми скоротили вихідний дріб на 2 .

Приведення дробів до нескоротного виду

У попередньому прикладі ми скоротили дріб 6 24 на 2 , внаслідок чого отримали дріб 3 12 . Неважко помітити, що цей дріб можна скоротити ще. Як правило, метою скорочення дробів є отримання в результаті нескоротного дробу. Як привести дріб до нескоротного виду?

Це можна зробити, якщо скоротити чисельник і знаменник на їхній найбільший спільний дільник (НДД). Тоді, за якістю найбільшого спільного дільника, в чисельнику і в знаменнику будуть взаємно прості числа, і дріб виявиться нескоротним.

a b = a ÷ Н О Д (a , b) b ÷ Н О Д (a , b)

Приведення дробу до нескоротного виду

Щоб привести дріб до нескоротного виду, потрібно його чисельник і знаменник розділити на їх НОД.

Повернемося до дробу 6 24 з першого прикладу і наведемо його до нескоротного вигляду. Найбільший загальний дільник чисел 6 та 24 дорівнює 6 . Скоротимо дріб:

6 24 = 6 ÷ 6 24 ÷ 6 = 1 4

Скорочення дробів зручно застосовувати, щоб не працювати з великими цифрами. Взагалі, в математиці існує негласне правило: якщо можна спростити будь-який вираз, потрібно це робити. Під скороченням дробу найчастіше мають на увазі її приведення до нескоротного виду, а не просто скорочення на загальний дільник чисельника та знаменника.

Правило скорочення дробів

Щоб скорочувати дроби, досить запам'ятати правило, яке складається з двох кроків.

Правило скорочення дробів

Щоб скоротити дріб потрібно:

  1. Знайти НОД чисельника та знаменника.
  2. Розділити чисельник та знаменник на їх НОД.

Розглянемо практичні приклади.

Приклад 1. Скоротимо дріб.

Дано дріб 182 195 . Скоротимо її.

Знайдемо НОД чисельника та знаменника. Для цього в даному випадку найзручніше скористатися алгоритмом Евкліда.

195 = 182 · 1 + 13 182 = 13 · 14 Н О Д (182, 195) = 13

Розділимо чисельник та знаменник на 13 . Отримаємо:

182 195 = 182 ÷ 13 195 ÷ 13 = 14 15

Готово. Ми отримали нескоротний дріб, який дорівнює вихідному дробу.

Як ще можна скорочувати дроби? У деяких випадках зручно розкласти чисельник та знаменник на прості множники, а потім із верхньої та нижньої частин дробу прибрати всі загальні множники.

Приклад 2. Скоротимо дріб

Даний дріб 360 2940 . Скоротимо її.

Для цього представимо вихідний дріб у вигляді:

360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7

Позбавимося загальних множників у чисельнику та знаменнику, в результаті чого отримаємо:

360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7 = 2 · 3 7 · 7 = 6 49

Зрештою, розглянемо ще один спосіб скорочення дробів. Це так зване послідовне скорочення. З використанням цього способу скорочення проводиться у кілька етапів, на кожному з яких дріб скорочується на якийсь очевидний спільний дільник.

Приклад 3. Скоротимо дріб

Скоротимо дріб 2000 4400 .

Відразу видно, що чисельник та знаменник мають загальний множник 100 . Скорочуємо дріб на 100 і отримуємо:

2000 4400 = 2000 ÷ 100 4400 ÷ 100 = 20 44

20 44 = 20 ÷ 2 44 ÷ 2 = 10 22

Результат, що вийшов, знову скорочуємо на 2 і отримуємо вже нескоротний дріб:

10 22 = 10 ÷ 2 22 ÷ 2 = 5 11

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Ця стаття продовжує тему перетворення алгебраїчних дробів: розглянемо таку дію як скорочення дробів алгебри. Дамо визначення самому терміну, сформулюємо правило скорочення та розберемо практичні приклади.

Yandex.RTB R-A-339285-1

Сенс скорочення алгебраїчного дробу

У матеріалах про звичайний дроб ми розглядали її скорочення. Ми визначили скорочення звичайного дробу як розподіл її чисельника та знаменника на загальний множник.

Скорочення дробу алгебри являє собою аналогічну дію.

Визначення 1

Скорочення алгебраїчного дробу– це розподіл її чисельника та знаменника на загальний множник. При цьому, на відміну від скорочення звичайного дробу (загальним знаменником може бути тільки число), загальним множником чисельника і знаменника дробу алгебри може служити многочлен, зокрема, одночлен або число.

Наприклад, алгебраїчна дріб 3 · x 2 + 6 · x · y 6 · x 3 · y + 12 · x 2 · y 2 може бути скорочена на число 3, в результаті отримаємо: x 2 + 2 · x · y 6 · x 3 · y + 12 · x 2 · y 2 . Цей же дріб ми можемо скоротити на змінну х, і це дасть нам вираз 3 · x + 6 · y 6 · x 2 · y + 12 · x · y 2 . Також заданий дріб можна скоротити на одночлен 3 · xабо будь-який з багаточленів x + 2 · y, 3 · x + 6 · y , x 2 + 2 · x · y або 3 · x 2 + 6 · x · y.

Кінцевою метою скорочення алгебраїчного дробу є дріб простішого виду, у кращому випадку – нескоротний дріб.

Чи всі дроби алгебри підлягають скороченню?

Знову ж таки з матеріалів про звичайні дроби ми знаємо, що існують скорочені і нескоротні дроби. Нескоротні – це дроби, які мають загальних множників чисельника і знаменника, відмінних від 1 .

З алгебраїчними дробами так само: вони можуть мати спільні множники чисельника і знаменника, можуть і не мати. Наявність загальних множників дозволяє спростити вихідний дріб за допомогою скорочення. Коли спільних множників немає, оптимізувати заданий дріб способом скорочення неможливо.

У загальних випадках за заданим видом дробу досить складно зрозуміти, чи підлягає вона скороченню. Звичайно, в деяких випадках наявність загального множника чисельника та знаменника очевидна. Наприклад, в алгебраїчному дробі 3 · x 2 3 · y зрозуміло, що загальним множником є ​​число 3 .

У дробі - x · y 5 · x · y · z 3 також ми відразу розуміємо, що скоротити її можливо на х, або y, або на х · y. І все ж таки набагато частіше зустрічаються приклади алгебраїчних дробів, коли загальний множник чисельника і знаменника не так просто побачити, а ще частіше - він просто відсутній.

Наприклад, дріб x 3 - 1 x 2 - 1 ми можемо скоротити на х - 1 при цьому зазначений загальний множник у записі відсутній. А ось дріб x 3 - x 2 + x - 1 x 3 + x 2 + 4 · x + 4 піддати дії скорочення неможливо, оскільки чисельник і знаменник не мають спільного множника.

Таким чином, питання з'ясування скоротливості алгебраїчного дробу не таке просте, і найчастіше простіше працювати з дробом заданого виду, ніж намагатися з'ясувати, чи вона скоротлива. При цьому мають місце такі перетворення, які в окремих випадках дозволяють визначити загальний множник чисельника і знаменника або зробити висновок про нескоротність дробу. Розглянемо детально це питання у наступному пункті статті.

Правило скорочення алгебраїчних дробів

Правило скорочення алгебраїчних дробівскладається з двох послідовних дій:

  • знаходження загальних множників чисельника та знаменника;
  • у разі знаходження таких здійснення безпосередньо впливу скорочення дробу.

Найзручнішим методом відшукання загальних знаменників є розкладання на множники многочленів, що у чисельнику і знаменнику заданої алгебраїчної дробу. Це дозволяє відразу побачити наявність чи відсутність загальних множників.

Саме вплив скорочення алгебраїчної дробу виходить з основному властивості алгебраїчної дробу, що виражається рівністю undefined , де a , b , c – деякі многочлены, причому b і c – ненульові. Першим кроком дріб наводиться до вигляду a · c b · c, в якому ми відразу помічаємо загальний множник c. Другим кроком – виконуємо скорочення, тобто. перехід до дробу виду a b.

Характерні приклади

Незважаючи на певну очевидність, уточнимо про окремий випадок, коли чисельник і знаменник алгебраїчної дробу рівні. Подібні дроби тотожно рівні 1 на всій ОДЗ змінних цього дробу:

5 5 = 1; - 2 3 - 2 3 = 1; x x = 1; - 3, 2 · x 3 - 3, 2 · x 3 = 1; 1 2 · x - x 2 · y 1 2 · x - x 2 · y;

Оскільки звичайні дроби є окремим випадком алгебраїчних дробів, нагадаємо, як здійснюється їх скорочення. Натуральні числа, записані в чисельнику та знаменнику, розкладаються на прості множники, потім загальні множники скорочуються (якщо є).

Наприклад, 24 1260 = 2 · 2 · 2 · 3 2 · 2 · 3 · 3 · 5 · 7 = 2 3 · 5 · 7 = 2 105

Добуток простих однакових множників можна записати як ступеня, і в процесі скорочення дробу використовувати властивість поділу ступенів з однаковими основами. Тоді вищезгадане рішення було б таким:

24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 - 2 3 2 - 1 · 5 · 7 = 2 105

(числитель та знаменник розділені на загальний множник 2 2 · 3). Або для наочності, спираючись на властивості множення та поділу, вирішенню дамо такий вигляд:

24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 2 2 · 3 3 2 · 1 5 · 7 = 2 1 · 1 3 · 1 35 = 2 105

За аналогією здійснюється скорочення алгебраїчних дробів, у яких у чисельнику та знаменнику є одночлени з цілими коефіцієнтами.

Приклад 1

Задано алгебраїчну дріб - 27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z . Необхідно зробити її скорочення.

Рішення

Можливо записати чисельник та знаменник заданого дробу як добуток простих множників та змінних, після чого здійснити скорочення:

27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 3 · 3 · 3 · a · a · a · a · a · b · b · c · z 2 · 3 · a · a · b · b · c · c · c · c · c · c · z = = - 3 · 3 · a · a · a 2 · c · c · c · c · c · c = - 9 · a 3 2 · c 6

Однак, раціональнішим способом буде запис рішення у вигляді виразу зі ступенями:

27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 3 3 · a 5 · b 2 · c · z 2 · 3 · a 2 · b 2 · c 7 · z = - 3 3 2 · 3 · a 5 a 2 · b 2 b 2 · c c 7 · z z = - 3 3 - 1 2 · a 5 - 2 1 · 1 · 1 c 7 - 1 · 1 = · - 3 2 · a 3 2 · c 6 = · - 9 · a 3 2 · c 6 .

Відповідь:- 27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 9 · a 3 2 · c 6

Коли в чисельнику і знаменнику алгебраїчної дробу є дробові числові коефіцієнти, можливо два шляхи подальших дій: або окремо здійснити поділ цих дробових коефіцієнтів, або попередньо позбутися дробових коефіцієнтів, помноживши чисельник і знаменник на якесь натуральне число. Останнє перетворення проводиться в силу основної якості алгебраїчної дробу (про нього можна почитати в статті «Приведення дробу алгебри до нового знаменника»).

Приклад 2

Задано дроб 2 5 · x 0, 3 · x 3 . Необхідно здійснити її скорочення.

Рішення

Можливо скоротити дріб таким чином:

2 5 · x 0 , 3 · x 3 = 2 5 3 10 · x x 3 = 4 3 · 1 x 2 = 4 3 · x 2

Спробуємо вирішити завдання інакше, попередньо позбавившись дробових коефіцієнтів – помножимо чисельник і знаменник на найменше загальне кратне знаменників цих коефіцієнтів, тобто. на НОК (5, 10) = 10 . Тоді отримаємо:

2 5 · x 0, 3 · x 3 = 10 · 2 5 · x 10 · 0, 3 · x 3 = 4 · x 3 · x 3 = 4 3 · x 2 .

Відповідь: 2 5 · x 0 , 3 · x 3 = 4 3 · x 2

Коли ми скорочуємо алгебраїчні дроби загального виду, у яких чисельники і знаменники можуть бути як одночленами, і многочленами, можлива проблема, коли загальний множник який завжди відразу видно. Або більше, він просто не існує. Тоді для визначення загального множника або фіксації факту про його відсутність чисельник і знаменник дробу алгебри розкладають на множники.

Приклад 3

Задано раціональний дріб 2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 . Потрібно її скоротити.

Рішення

Розкладемо на множники багаточлени в чисельнику та знаменнику. Здійснимо винесення за дужки:

2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · b 2 · (a 2 + 14 · a + 49) b 3 · (a 2 - 49)

Ми бачимо, що вираз у дужках можна перетворити з використанням формул скороченого множення:

2 · b 2 · (a 2 + 14 · a + 49) b 3 · (a 2 - 49) = 2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7)

Добре помітно, що можна скоротити дріб на загальний множник b 2 · (a + 7). Зробимо скорочення:

2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7) = 2 · (a + 7) b · (a - 7) = 2 · a + 14 a · b - 7 · b

Коротке рішення без пояснень запишемо як ланцюжок рівностей:

2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · b 2 · (a 2 + 14 a + 49) b 3 · (a 2 - 49) = = 2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7) = 2 · (a + 7) b · (a - 7) = 2 · a + 14 a · b - 7 · b

Відповідь: 2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · a + 14 a · b - 7 · b .

Трапляється, що загальні множники приховані числовими коефіцієнтами. Тоді при скороченні дробів оптимально числові множники при старших ступенях чисельника та знаменника винести за дужки.

Приклад 4

Дано алгебраїчну дріб 1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 . Необхідно здійснити її скорочення, якщо це можливо.

Рішення

На погляд у чисельника і знаменника немає спільного знаменника. Однак спробуємо перетворити заданий дріб. Винесемо за дужки множник х у чисельнику:

1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 = x · 1 5 - 2 7 · x 2 · y 5 · x 2 · y - 3 1 2

Тепер видно певну схожість виразу в дужках і вирази у знаменнику за рахунок x 2 · y . Винесемо за дужку числові коефіцієнти при старших ступенях цих багаточленів:

x · 1 5 - 2 7 · x 2 · y 5 · x 2 · y - 3 1 2 = x · - 2 7 · - 7 2 · 1 5 + x 2 · y 5 · x 2 · y - 1 5 · 3 1 2 = = - 2 7 · x · - 7 10 + x 2 · y 5 · x 2 · y - 7 10

Тепер стає видно загальний множник, здійснюємо скорочення:

2 7 · x · - 7 10 + x 2 · y 5 · x 2 · y - 7 10 = - 2 7 · x 5 = - 2 35 · x

Відповідь: 1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 = - 2 35 · x.

Зробимо акцент на тому, що навичка скорочення раціональних дробів залежить від уміння розкладати багаточлени на множники.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Працюючи з дробами, багато учнів допускають одні й самі помилки. А все тому, що вони забувають про елементарні правила арифметики. Сьогодні ми повторимо ці правила на конкретних завданнях, які я даю на своїх заняттях.

Ось завдання, яке я пропоную кожному, хто готується до ЄДІ з математики:

Завдання. Морська свиня їсть 150 г корму на день. Але вона виросла і стала їсти на 20% більше. Скільки грамів корму тепер їсть свиня?

Неправильне рішення. Це завдання на відсотки, що зводиться до рівняння:

Багато (дуже багато) скорочують число 100 у чисельнику і знаменнику дробу:

Ось такої помилки припустилася моя учениця прямо в день написання цієї статті. Червоним відзначені числа, скорочені.

Зайве говорити, що відповідь вийшла неправильною. Судіть самі: свиня їла 150 грам, а стала їсти 3150 грам. Збільшення не так на 20%, а 21 раз, тобто. на 2000%.

Щоб не допускати таких непорозумінь, пам'ятайте основне правило:

Скорочувати можна лише множники. Складники скорочувати не можна!

Таким чином, правильне вирішення попереднього завдання виглядає так:

Червоним відзначені цифри, які скорочуються у чисельнику та знаменнику. Як бачите, у чисельнику стоїть твір, знаменнику - звичайне число. Тому скорочення цілком законне.

Робота з пропорціями

Ще одне проблемне місце. пропорції. Особливо коли змінна стоїть з обох боків. Наприклад:

Завдання. Розв'яжіть рівняння:

Неправильне рішення - у деяких буквально руки сверблять скоротити все на m :

Змінні змінні показані червоним. Виходить вираз 1/4 = 1/5 - повне марення, ці числа ніколи не рівні.

А тепер – правильне рішення. Фактично, це звичайне лінійне рівняння. Вирішується або перенесенням всіх елементів в один бік, або за основною якістю пропорції:

Чимало читачів заперечать: «Де помилка в першому рішенні?» Що ж, розбираймося. Згадаймо правило роботи з рівняннями:

Будь-яке рівняння можна ділити та множити на будь-яке число, відмінне від нуля.

Просікли фішку? Можна ділити тільки числа, відмінні від нуля. Зокрема, можна ділити на змінну m тільки якщо m ! = 0. А що робити, якщо все-таки m = 0? Підставимо та перевіримо:

Набули правильну числову рівність, тобто. m = 0 – корінь рівняння. Для інших m != 0 отримуємо вираз виду 1/4 = 1/5, що, звісно, ​​не так. Таким чином, немає коренів, відмінних від нуля.

Висновки: збираємо всі разом

Отже, для розв'язання дрібно-раціональних рівнянь пам'ятайте три правила:

  1. Скорочувати можна лише множники. Доданки – не можна. Тому вчіться розкладати чисельник і знаменник на множники;
  2. Основна властивість пропорції: добуток крайніх елементів дорівнює добутку середніх;
  3. Рівняння можна множити і ділити тільки числа k , відмінні від нуля. Випадок k = 0 треба перевіряти окремо.

Пам'ятайте ці правила і не допускайте помилок.

Поділі чисельника та знаменника дробу на їх спільний дільник, відмінний від одиниці, називають скороченням дробу.

Щоб скоротити звичайний дріб, потрібно розділити його чисельник і знаменник на те саме натуральне число.

Це число є найбільшим спільним дільником чисельника та знаменника даного дробу.

Можливі наступні форми запису рішенняприкладів скорочення звичайних дробів.

Студент має право вибрати будь-яку форму запису.

приклади. Спростити дроби.

Скоротимо дріб на 3 (ділимо чисельник на 3;

ділимо знаменник на 3).

Скорочуємо дріб на 7.

Виконуємо зазначені дії в чисельнику та знаменнику дробу.

Отриманий дріб скорочуємо на 5.

Скоротимо цей дріб 4) на 5·7³- Найбільший загальний дільник (НДД) чисельника та знаменника, який складається із загальних множників чисельника та знаменника, взятих у ступені з найменшим показником.

Розкладемо чисельник і знаменник цього дробу на прості множники.

Отримуємо: 756=2²·3³·7і 1176 = 2? · 3 · 7 ².

Визначаємо НОД (найбільший спільний дільник) чисельника та знаменника дробу 5) .

Це добуток загальних множників, взятих із найменшими показниками.

НОД(756; 1176) = 2²·3·7.

Ділимо чисельник і знаменник даного дробу з їхньої НОД, т. е. на 2²·3·7отримуємо нескоротний дріб 9/14 .

А можна було записати розкладання чисельника та знаменника у вигляді добутку простих множників, не застосовуючи поняття ступеня, а потім провести скорочення дробу, закреслюючи однакові множники у чисельнику та знаменнику. Коли однакових множників не залишиться — перемножуємо множники, що залишилися, окремо в чисельнику і окремо в знаменнику і виписуємо дроб, що вийшов. 9/14 .

І, нарешті, можна було скорочувати цей дріб 5) поступово, застосовуючи ознаки поділу чисел і до чисельника і знаменника дробу. Розмірковуємо так: числа 756 і 1176 закінчуються парною цифрою, отже, обоє поділяються на 2 . Скорочуємо дріб на 2 . Чисельник і знаменник нового дробу - числа 378 і 588 також поділяються на 2 . Скорочуємо дріб на 2 . Помічаємо, що число 294 - парне, а 189 - непарне, і скорочення на 2 вже неможливо. Перевіримо ознаку ділимості чисел 189 і 294 на 3 .

(1+8+9)=18 ділиться на 3 і (2+9+4)=15 ділиться на 3, отже, і числа 189 і 294 поділяються на 3 . Скорочуємо дріб на 3 . Далі, 63 ділиться на 3, а 98 - Ні. Перебираємо інші звичайні множники. Обидва числа поділяються на 7 . Скорочуємо дріб на 7 і отримуємо нескоротний дріб 9/14 .