Тема двугранный угол. Двугранный угол, перпендикулярные плоскости


















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: ввести понятие двугранного угла и его линейного угла;

  • рассмотреть задачи на применение этих понятий;
  • сформировать конструктивный навык нахождения угла между плоскостями;
  • рассмотреть задачи на применение этих понятий.
  • Ход урока

    I. Организационный момент.

    Сообщить тему урока, сформировать цели урока.

    II. Актуализация знаний учащихся (слайд 2, 3).

    1. Подготовка к изучению нового материала.

    Что называется углом на плоскости?

    Что называется углом между прямыми в пространстве?

    Что называется углом между прямой и плоскостью?

    Сформулируйте теорему о трех перпендикулярах

    III. Изучение нового материала.

    • Понятие двугранного угла.

    Фигура, образованная двумя полуплоскостями , проходящими через прямую МN, называется двугранным углом (слайд 4).

    Полуплоскости - грани, прямая МN – ребро двугранного угла.

    Какие предметы в обыденной жизни имеют форму двугранного угла? (Cлайд 5)

    • Угол между плоскостями АСН и СНD – это двугранный угол АСНD, где СН – ребро. Точки А и D лежат на гранях этого угла. Угол AFD – линейный угол двугранного угла АCHD (слайд 6).
    • Алгоритм построения линейного угла (слайд 7).

    1 способ. На ребре взять любую точку О и провести перпендикуляры в эту точку (РО DE, KO DE) получили угол РОК - линейный.

    2 способ. В одной полуплоскости взять точку К и опустить из нее два перпендикуляра на другую полуплоскость и ребро (КО и КР), тогда по теореме обратной ТТП РОDE

    • Все линейные углы двугранного угла равны (слайд 8). Доказательство: лучи ОА и О 1 А 1 сонаправлены, лучи ОВ и О 1 В 1 тоже сонаправлены, углы ВОА и В 1 О 1 А 1 равны как углы с сонаправлеными сторонами.
    • Градусной мерой двугранного угла называется градусная мера его линейного угла (слайд 9).

    IV. Закрепление изученного материала.

    • Решение задач (устно по готовым чертежам). (Слайды10-12)

    1. РАВС – пирамида; угол АСВ равен 90 о, прямая РВ перпендикулярна плоскости АВС. Доказать, что угол РСВ – линейный угол двугранного угла с

    2. РАВС - пирамида; АВ = ВС, D – середина отрезка АС, прямая РВ перпендикулярна плоскости АВС. Доказать, что угол PDB – линейный угол двугранного угла с ребром АС.

    3. PABCD – пирамида; прямая РВ перпендикулярна плоскости АВС, ВК перпендикулярна DC. Доказать, что угол РКВ – линейный угол двугранного угла с ребром СD.

    • Задачи на построение линейного угла (слайды 13-14).

    1. Построить линейный угол двугранного угла с ребром АС, если в пирамиде РАВС грань АВС – правильный треугольник, О – точка пересечения медиан, прямая РО перпендикулярна плоскости АВС

    2. Дан ромб АВСD.Прямая РС перпендикулярна плоскости АВСD.

    Построить линейный угол двугранного угла с ребром ВD и линейный угол двугранного угла с ребром АD.

    • Вычислительная задача. (Слайд 15)

    В параллелограмме АВСD угол АDС равен 120 0 , АD = 8 см,

    DС= 6 см, прямая РС перпендикулярна плоскости АВС, РС= 9 см.

    Найти величину двугранного угла с ребром АD и площадь параллелограмма.

    V. Домашнее задание (слайд16).

    П. 22, № 168, 171.

    Используемая литература:

    1. Геометрия 10-11 Л.С.Атанасян.
    2. Система задач по теме “Двугранные углы” М.В.Севостьянова (г.Мурманск), журнал Математика в школе 198… г.

    ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

    В планиметрии основными объектами являются прямые, отрезки, лучи и точки. Лучи исходящие из одной точки, образуют одну их геометрических фигур-угол.

    Мы знаем, что линейный угол измеряется в градусах и радианах.

    В стереометрии к объектам добавляется плоскость. Фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости в геометрии называется двугранным углом. Полуплоскости - это грани двугранного угла. Прямая а - это ребро двугранного угла.

    Двухгранный угол как и линейный угол можно назвать, измерить, построить. Это и предстоит нам выяснить в этом уроке.

    Найдём двухгранный угол на модели тетраэдра АВСD.

    Двугранный угол с ребром АВ называют CABD, где С и D точки принадлежащие разным граням угла а ребро АВ называют в середине

    Вокруг нас достаточно много предметов с элементами в виде двухгранного угла.

    Во многих городах в парках установлены специальные скамейки для примирения. Скамейка выполнена в виде двух сходящихся к центру наклонных плоскостей.

    При строительстве домов часто используется так называемая двухскатная крыша. На этом доме крыша выполнена в виде двухгранного угла в 90 градусов.

    Двугранный угол тоже измеряется в градусах или радианах, но как его измерить.

    Интересно заметить, что крыши домов лежат на стропилах. А обрешётка стропил образует два ската крыши под заданным углом.

    Перенесем изображение на чертёж. На чертеже для нахождения двухгранного угла на его ребре отмечается точка В. Из этой точки проводятся два луча ВА и ВС перпендикулярно ребру угла. Образованный этими лучами угол АВС называется линейным углом двугранного угла.

    Градусная мера двугранного угла равна градусной мере его линейного угла.

    Измерим угол АОВ.

    Градусная мера данного двугранного угла равна шестидесяти градусам.

    Линейных углов для двугранного угла можно провести бесконечное количество, важно знать, что все они равны.

    Рассмотрим два линейных угла АОВ и А1О1В1 . Лучи ОА и О1А1 лежат в одной грани и перпендикулярны к прямой ОО1, поэтому они сонаправлены. Лучи ОВ и О1В1 так же сонаправлены. Поэтому угол АОВ равен углуА1О1В1 как углы с сонаправленными сторонами.

    Так двугранный угол характеризуется линейным углом, а линейные углы бывают острые, тупые и прямые. Рассмотрим модели двугранных углов.

    Тупой угол, если его линейный угол от 90 до 180 градусов.

    Прямой угол, если его линейный угол равен 90 градусов.

    Острый угол, елси его линейный угол от 0 до 90 градусов.

    Докажем одно из важных свойств линейного угла.

    Плоскость линейного угла перпендикулярна к ребру двугранного угла.

    Пусть угол АОВ - линейный угол данного двугранного угла. По построению лучи АО и ОВ перпендикулярные прямой а.

    Через две пересекающиеся прямые АО и ОВ проходит плоскость АОВ по теореме: Через две пересекающиеся прямые проходит плоскость и притом только одна.

    Прямая а перпендикулярна двум пересекающимся прямым лежащим в этой плоскости, значит по признаку перпендикулярности прямой и плоскости прямая а перпендикулярна плоскости АОВ.

    Для решения задач важно уметь строить линейный угол заданного двухгранного угла. Построить линейный угол двугранного угла с ребром АВ для тетраэдра АВСD.

    Речь идет о двугранном угле, который образован, во-первых, ребром АВ, одной гранью АВD, второй гранью АВС.

    Вот один из способов построения.

    Проведем перпендикуляр из точки D к плоскости АВС, Отметим точку М основание перпендикуляра. Вспомним, что в тетраэдре основание перпендикуляра совпадает с центром вписанной окружности в основание тетраэдра.

    Проведем наклонную из точки D перпендикулярно к ребру АВ, отметим точку N основание наклонной.

    В треугольнике DMN отрезок NM будет проекций наклонной DN на плоскость АВС. По теореме о трёх перпендикулярах ребро АВ будет перпендикулярно проекции NМ.

    Значит cтороны угла DNM перпендикулярны к ребру АВ, значит построенный угол DNM искомый линейный угол.

    Рассмотрим пример решения задачи на вычисление двугранного угла.

    Равнобедренный треугольник АВС и правильный треугольник АDB не лежат в одной плоскости. Отрезок CD является перпендикуляром к плоскости ADB. Найдите двугранный угол DABC, если AC=CB=2 см, АB= 4см.

    Двугранный угол DABC равен его линейному углу. Построим этот угол.

    Проведем наклонную СМ перпендикулярно к ребру АВ, так как треугольник АСВ равнобедренный, то точка М совпадёт с серединой ребра АВ.

    Прямая СD по условию перпендикулярна плоскости ADB, значит перпендикулярна прямой DM лежащей в этой плоскости. А отрезок МD является проекцией наклонной СМ на плоскость АDВ.

    Прямая АВ перпендикулярна наклонной СМ по построению, значит по теореме о трех перпендикулярах перпендикулярна проекции MD.

    Итак к ребру АВ найдены два перпендикуляра СМ и DМ. Значит они образуют линейный угол СMD двугранного угла DАВС. И нам останется его найти из прямоугольного треугольника СDM.

    Так отрезок СМ медиана и высота равнобедренного треугольника АСВ, то по теореме Пифагора катет СМ равен 4 см.

    Из прямоугольного треугольника DMB по теореме Пифагора катет DM равен двум корням из трёх.

    Косинус угла из прямоугольного треугольника равен отношению прилежащего катета МD к гипотенузе СМ и равен три корня из трёх на два. Значит угол СМD равен 30 градусам.

    В геометрии для изучения фигур используют две важные характеристики: длины сторон и углы между ними. В случае пространственных фигур к этим характеристиками добавляются двугранные углы. Рассмотрим, что это такое, а также опишем методику определения этих углов на примере пирамиды.

    Понятие о двугранном угле

    Каждый знает, что две пересекающиеся прямые образуют некоторый угол с вершиной в точке их пересечения. Этот угол можно измерить с помощью транспортира или воспользоваться тригонометрическими функциями для его вычисления. Образованный двумя прямыми угол называется линейным.

    Теперь представим, что в трехмерном пространстве имеется две плоскости, которые пересекаются по прямой. Они изображена на рисунке.

    Двугранным углом называется угол между двумя пересекающимися плоскостями. Так же как и линейный, он измеряется в градусах или радианах. Если к какой-либо точке прямой, по которой плоскости пересекаются, восстановить два перпендикуляра, лежащих в этих плоскостях, то угол между ними будет искомым двугранным. Определить этот угол проще всего, если воспользоваться уравнениями плоскостей в общем виде.

    Уравнение плоскостей и формула для угла между ними

    Уравнение любой плоскости в пространстве в общем виде записывается так:

    A × x + B × y + C × z + D = 0.

    Здесь x, y, z - это координаты точек, принадлежащих плоскости, коэффициенты A, B, C, D - некоторые известные числа. Удобство этого равенства для вычисления двугранных углов заключается в том, что оно в явном виде содержит координаты направляющего вектора плоскости. Будем обозначать его n¯. Тогда:

    Вектор n¯ перпендикулярен плоскости. Угол между двумя плоскостями равен углу между их n 1 ¯ и n 2 ¯. Из математики известно, что угол, образованный двумя векторами, однозначно определяется из их скалярного произведения. Это позволяет записать формулу для вычисления двугранного угла между двумя плоскостями:

    φ = arccos (|(n 1 ¯ × n 2 ¯)| / (|n 1 ¯| × |n 2 ¯|)).

    Если подставить координаты векторов, то формула запишется в явном виде:

    φ = arccos (|A 1 × A 2 + B 1 × B 2 + C 1 × C 2 | / (√(A 1 2 + B 1 2 + C 1 2) × √(A 2 2 + B 2 2 + C 2 2))).

    Знак модуля в числителе используется, чтобы определить только острый угол, поскольку двугранный угол всегда меньше или равен 90 o .

    Пирамида и ее углы

    Пирамидой называют фигуру, которая образована одним n-угольником и n треугольниками. Здесь n - целое число, равное количеству сторон многоугольника, который является основанием пирамиды. Данная пространственная фигура является многогранником или полиэдром, поскольку она состоит из плоских граней (сторон).

    Многогранника-пирамиды могут быть двух типов:

    • между основанием и боковой стороной (треугольником);
    • между двумя боковыми сторонами.

    Если рассматривается пирамида правильная, то названные углы для нее определить несложно. Для этого по координатам трех известных точек следует составить уравнение плоскостей, а затем воспользоваться приведенной в пункте выше формулой для угла φ.

    Ниже приведем пример, в котором покажем, как найти двугранные углы при основании пирамиды четырехугольной правильной.

    Четырехугольная и угол при ее основании

    Предположим, что дана правильная пирамида с квадратным основанием. Длина стороны квадрата равна a, высота фигура составляет h. Найдем угол между основанием пирамиды и ее боковой стороной.

    Поместим начало координатной системы в центр квадрата. Тогда координаты точек A, B, C, D, показанных на рисунке, будут равны:

    A = (a/2; -a/2; 0);

    B = (a/2; a/2; 0);

    C = (-a/2; a/2; 0);

    Рассмотрим плоскости ACB и ADB. Очевидно, что направляющий вектор n 1 ¯ для плоскости ACB будет равен:

    Для определения направляющего вектора n 2 ¯ плоскости ADB поступим следующим образом: найдем произвольные два вектора, которые ей принадлежат, например, AD¯ и AB¯, затем, вычислим их векторное произведение. Его результат даст координаты n 2 ¯. Имеем:

    AD¯ = D - A = (0; 0; h) - (a/2; -a/2; 0) = (-a/2; a/2; h);

    AB¯ = B - A = (a/2; a/2; 0) - (a/2; -a/2; 0) = (0; a; 0);

    n 2 ¯ = = [(-a/2; a/2; h) × (0; a; 0)] = (-a × h; 0; -a 2 /2).

    Поскольку умножение и деление вектора на число не изменяет его направления, то преобразуем полученный n 2 ¯, разделив его координаты на -a, получим:

    Мы определили направляющие вектора n 1 ¯ и n 2 ¯ для плоскостей основания ACB и боковой стороны ADB. Остается воспользоваться формулой для угла φ:

    φ = arccos (|(n 1 ¯ × n 2 ¯)| / (|n 1 ¯| × |n 2 ¯|)) = arccos (a / (2 × √h 2 + a 2 /4)).

    Преобразуем полученное выражение и перезапишем его так:

    φ = arccos (a / √(a 2 + 4 × h 2)).

    Мы получили формулу для двугранного угла при основании для правильной четырехугольной пирамиды. Зная высоту фигуры и длину ее стороны, можно рассчитать угол φ. Например, для пирамиды Хеопса, сторона основания которой составляет 230,4 метра, а начальная высота равнялась 146,5 метра, угол φ будет равен 51,8 o .

    Определить двугранный угол для четырехугольной правильной пирамиды также можно с помощью геометрического метода. Для этого достаточно рассмотреть прямоугольный треугольник, образованный высотой h, половиной длины основания a/2 и апофемой равнобедренного треугольника.

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    ДВУГРАННЫЙ УГОЛ Учитель математики ГОУ СОШ №10 Еременко М.А.

    Основные задачи урока: Ввести понятие двугранного угла и его линейного угла Рассмотреть задачи на применение этих понятий

    Определение: Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой.

    Величиной двугранного угла называется величина его линейного угла. AF ⊥ CD BF ⊥ CD AFB -линейный угол двугранного угла ACD В

    Докажем, что все линейные углы двугранного угла равны друг другу. Рассмотрим два линейных угла АОВ и А 1 ОВ 1 . Лучи ОА и ОА 1 лежат в одной грани и перпендикулярны ОО 1 , поэтому они сонаправлены. Лучи ОВ и ОВ 1 также сонаправлены. Следовательно, ∠ АОВ = ∠ А 1 ОВ 1 (как углы с сонаправленными сторонами).

    Примеры двугранных углов:

    Определение: Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных этими плоскостями.

    Задача 1: В кубе A … D 1 найдите угол между плоскостями ABC и CDD 1 . Ответ: 90 o .

    Задача 2: В кубе A … D 1 найдите угол между плоскостями ABC и CDA 1 . Ответ: 45 o .

    Задача 3: В кубе A … D 1 найдите угол между плоскостями ABC и BDD 1 . Ответ: 90 o .

    Задача 4: В кубе A … D 1 найдите угол между плоскостями ACC 1 и BDD 1 . Ответ: 90 o .

    Задача 5: В кубе A … D 1 найдите угол между плоскостями BC 1 D и BA 1 D . Решение: Пусть О – середина В D. A 1 OC 1 – линейный угол двугранного угла А 1 В D С 1 .

    Задача 6: В тетраэдре DABC все ребра равны, точка М – середина ребра АС. Докажите, что ∠ DMB – линейный угол двугранного угла BACD .

    Решение: Треугольники ABC и ADC правильные, поэтому, BM ⊥ AC и DM ⊥ AC и, следовательно, ∠ DMB является линейным углом двугранного угла DACB .

    Задача 7: Из вершины В треугольника АВС, сторона АС которого лежит в плоскости α , проведен к этой плоскости перпендикуляр ВВ 1 . Найдите расстояние от точки В до прямой АС и до плоскости α , если АВ=2, ∠ВАС=150 0 и двугранный угол ВАСВ 1 равен 45 0 .

    Решение: АВС – тупоугольный треугольник с тупым углом А, поэтому основание высоты ВК лежит на продолжении стороны АС. ВК – расстояние от точки В до АС. ВВ 1 – расстояние от точки В до плоскости α

    2) Так как АС ⊥ВК, то АС⊥КВ 1 (по теореме, обратной теореме о трех перпендикулярах). Следовательно, ∠ВКВ 1 – линейный угол двугранного угла ВАСВ 1 и ∠ВКВ 1 =45 0 . 3) ∆ВАК: ∠А=30 0 , ВК=ВА· sin 30 0 , ВК =1. ∆ВКВ 1: ВВ 1 =ВК· sin 45 0 , ВВ 1 =

    Величину угла между двумя различными плоскостями можно определить для любого взаимного расположения плоскостей.

    Тривиальный случай если плоскости параллельны. Тогда угол между ними считается равным нулю.

    Нетривиальный случай если плоскости пересекаются. Этому случаю и посвящено дальнейшее обсуждение. Сначала нам понадобится понятие двугранного угла.

    9.1 Двугранный угол

    Двугранный угол это две полуплоскости с общей прямой (которая называется ребром двугранного угла). На рис. 50 изображён двугранный угол, образованный полуплоскостями и; ребром этого двугранного угла служит прямая a, общая для данных полуплоскостей.

    Рис. 50. Двугранный угол

    Двугранный угол можно измерять в градусах или радианах словом, ввести угловую величину двугранного угла. Делается это следующим образом.

    На ребре двугранного угла, образованного полуплоскостями и, возьмём произвольную точку M. Проведём лучи MA и MB, лежащие соответственно в данных полуплоскостях и перпендикулярные ребру (рис. 51 ).

    Рис. 51. Линейный угол двугранного угла

    Полученный угол AMB это линейный угол двугранного угла. Угол " = \AMB как раз и является угловой величиной нашего двугранного угла.

    Определение. Угловая величина двугранного угла это величина линейного угла данного двугранного угла.

    Все линейные углы двугранного угла равны друг другу (ведь они получаются друг из друга параллельным сдвигом). Поэтому данное определение корректно: величина " не зависит от конкретного выбора точки M на ребре двугранного угла.

    9.2 Определение угла между плоскостями

    При пересечении двух плоскостей получаются четыре двугранных угла. Если все они имеют одинаковую величину (по 90), то плоскости называются перпендикулярными; угол между плоскостями тогда равен 90 .

    Если не все двугранные углы одинаковы (то есть имеются два острых и два тупых), то углом между плоскостями называется величина острого двугранного угла (рис. 52 ).

    Рис. 52. Угол между плоскостями

    9.3 Примеры решения задач

    Разберём три задачи. Первая простая, вторая и третья примерно на уровне C2 на ЕГЭ по математике.

    Задача 1. Найдите угол между двумя гранями правильного тетраэдра.

    Решение. Пусть ABCD правильный тетраэдр. Проведём медианы AM и DM соответствующих граней, а также высоту тетраэдра DH (рис. 53 ).

    Рис. 53. К задаче 1

    Будучи медианами, AM и DM являются также высотами равносторонних треугольников ABC и DBC. Поэтому угол " = \AMD есть линейный угол двугранного угла, образованного гранями ABC и DBC. Находим его из треугольника DHM:

    1 AM

    Ответ: arccos 1 3 .

    Задача 2. В правильной четырёхугольной пирамиде SABCD (с вершиной S) боковое ребро равно стороне основания. Точка K середина ребра SA. Найдите угол между плоскостями

    Решение. Прямая BC параллельна AD и тем самым параллельна плоскости ADS. Поэтому плоскость KBC пересекает плоскость ADS по прямой KL, параллельной BC (рис. 54 ).

    Рис. 54. К задаче 2

    При этом KL будет также параллельна прямой AD; следовательно, KL средняя линия треугольника ADS, и точка L середина DS.

    Проведём высоту пирамиды SO. Пусть N середина DO. Тогда LN средняя линия треугольника DOS, и потому LN k SO. Значит, LN перпендикуляр к плоскости ABC.

    Из точки N опустим перпендикуляр NM на прямую BC. Прямая NM будет проекцией наклонной LM на плоскость ABC. Из теоремы о трёх перпендикулярах следует тогда, что LM также перпендикулярна BC.

    Таким образом, угол " = \LMN является линейным углом двугранного угла, образованного полуплоскостями KBC и ABC. Будем искать этот угол из прямоугольного треугольника LMN.

    Пусть ребро пирамиды равно a. Сначала находим высоту пирамиды:

    SO = p

    Решение. Пусть L точка пересечения прямых A1 K и AB. Тогда плоскость A1 KC пересекает плоскость ABC по прямой CL (рис.55 ).

    A C

    Рис. 55. К задаче 3

    Треугольники A1 B1 K и KBL равны по катету и острому углу. Следовательно, равны и другие катеты: A1 B1 = BL.

    Рассмотрим треугольник ACL. В нём BA = BC = BL. Угол CBL равен 120 ; стало быть, \BCL = 30 . Кроме того, \BCA = 60 . Поэтому \ACL = \BCA + \BCL = 90 .

    Итак, LC ? AC. Но прямая AC служит проекцией прямой A1 C на плоскость ABC. По теореме о трёх перпендикулярах заключаем тогда, что LC ? A1 C.

    Таким образом, угол A1 CA линейный угол двугранного угла, образованного полуплоскостями A1 KC и ABC. Это и есть искомый угол. Из равнобедренного прямоугольного треугольника A1 AC мы видим, что он равен 45 .